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Executive Summary

High-Performance Computing (HPC) infrastructures are increasingly sought to support Big
Data applications, whose workloads significantly differ from those of traditional parallel
computing tasks. This is expected given the large pool of available computational resources,
which can be leveraged to conduct a richer set of studies and analysis for areas such as
healthcare, smart cities, natural sciences, among others. However, coping with the
heterogeneous hardware of these large-scale infrastructures and the different HPC and Big
Data application requirements raises new research and technological challenges. Namely, it
becomes increasingly difficult to efficiently manage available computational and storage
resources, to provide transparent application access to such resources, and to ensure

performance isolation and fairness across the different workloads.

The BigHPC project aims at addressing these challenges with a novel management framework,
for Big Data and parallel computing workloads, that can be seamlessly integrated with existing
HPC infrastructures and software stacks. Namely, the project will develop novel monitoring,
virtualization, and storage management components that can cope with the infrastructural
scale and heterogeneity, as well as, the different workload requirements, while ensuring the

best performance and resource usage for both applications and infrastructures.

These components will be integrated into a single software bundle that will be validated
through real use-cases and a pilot deployed on both TACC and MACC data centers. Also, the
proposed framework will be provided as a service for companies and institutions that wish to

leverage their infrastructures for deploying Big Data and HPC applications.

This deliverable details the user and platform requirements for the BigHPC framework while
taking into account the project’'s use-cases and the experience of TACC and MACC on
providing HPC services to different stakeholders. This information is crucial to guide the
design and development of the different platform components and to ensure their proper

integration.
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Glossary
API Application Programming Interface
CLI Command Line Interface
CLI Command Line Interface
CPU Central Processing Unit
CUDA Compute Unified Device Architecture
GPU Graphics Processing Unit
HPC High-Performance Computing
I/O Input/Output
INESC TEC Institute for Systems and Computer Engineering, Technology and Science
LIP Laboratory of Instrumentation and Experimental Particle Physics
MACC Minho Advanced Computing Center
MPI Message Passing Interface
RAM Random-Access Memory
RDMA Remote Direct Memory Access
SDS Software-Defined Storage
SVE Scalable Vector Extension
TACC Texas Advanced Computing Center
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1. Introduction

HPC infrastructures and services are no longer solely targeted at highly parallel modeling and
simulation tasks. Indeed, the computational power offered by these systems is now being
used to support advanced Big Data analytics for fields such as healthcare, agriculture,
environmental sciences, smart cities, fraud detection, among others [OG+15, NCR+18]. By
combining both types of computational paradigms, HPC infrastructures will be key for
improving the lives of citizens, speeding up scientific breakthroughs in different fields (e.g.,

health, IoT, biology, chemistry, physics), and increasing the competitiveness of companies.

As the utility and usage of HPC infrastructures increases, more computational and storage
power is required to efficiently handle the amount of targeted data-driven applications. In
fact, many HPC centers are now aiming at exascale supercomputers supporting at least one
exaFLOPs (10" operations per second), which represents a thousandfold increase in
processing power over the first petascale computer deployed in 2008 [RD+15, ECS+17].
Although this is a necessary requirement for handling the increasing complexity and scale of
HPC applications, there are several outstanding challenges that still need to be tackled so that

this extra computational power can be fully leveraged.

Management of heterogeneous infrastructures and workloads: By adding more compute
and storage nodes one is also increasing the complexity of the overall HPC distributed
infrastructure and making it harder to monitor and manage. This complexity is increased due
to the need of supporting highly heterogeneous applications that translate into different

workloads with specific data storage and processing needs [ECS+17].

Support for general-purpose analytics: The increased heterogeneity also demands that
HPC infrastructures are now able to support general-purpose applications that were not
designed explicitly to run on specialized HPC hardware, which was typically the case for

traditional modeling and simulation applications [KWG+13].

Avoiding the storage bottleneck: As a complementary challenge, by only increasing the
computational power and improving the management of HPC infrastructures it may still not
be possible to fully harness the capabilities of these infrastructures. In fact, many applications

are now data-driven and will require efficient data storage and retrieval (e.g., low latency
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or/and high throughput) from HPC clusters. With an increasing number of applications and
heterogeneous workloads, the storage systems supporting HPC may easily become a
bottleneck [YDI+16, ECS+17]. As pointed out by several studies, the storage access time is one
of the major bottlenecks limiting the efficiency of current and next-generation HPC

infrastructures.

To sum up, the BigHPC project aims at addressing three main challenges: 1) improving the
management of heterogeneous HPC infrastructures and workloads; 2) enabling the support
for general-purpose analytical applications; and 3) solving the current storage access
bottleneck of HPC services. Addressing these challenges is crucial for taking full advantage of

the next generation of HPC infrastructures.

The goal of this deliverable is to further explore these three challenges in terms of
infrastructural and user requirements. This analysis will be based on the current
infrastructures supported at MACC and TACC while focusing on the efficient support of both

parallel and Big Data workloads.

The functional and non-functional requirements described in this document, along with an
analysis of current solutions available for managing HPC infrastructures, will be key to drive

the design, architecture and implementation of the Big HPC platform.

The document is structured as follows: Section 2 provides a preliminary overview of the
envisioned BigHPC framework. Section 3 details the framework’s general requirements, as
well as, MACC and TACC's infrastructures, software and supported workloads. Then, by
building on the previous information, Section 4 further discusses the Ffunctional and
nonfunctional requirements for the components of BigHPC's framework. Section 5 concludes

this deliverable.
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2. The BigHPC Platform

BigHPC will design and implement a novel solution for monitoring and managing the
infrastructure, data and applications of current and next-generation HPC data centers. The
proposed solution aims at enabling both traditional HPC, as well as, novel Big Data analytics
applications to be deployed on top of heterogeneous HPC hardware. Also, it will ensure that
resources (e.g., CPU, RAM, storage, network) are monitored and managed efficiently, thus
leveraging the full capabilities of the infrastructure while ensuring that the performance and

availability requirements of the different applications are met.

a8 i

Compute Nodes I/O Buffers

i . .
I- Container . Monitoring Data Plane “ Monitoring “ Virtualization <:::> Storage Manager !
' probe Stage events Manager evenis events !

Figure 1: Overview of BigHPC platform

bighpcwavecom.pt | Copyright 2020 © bigHPC consortium 7


http://bighpc.wavecom.pt/

E1PC

As depicted in Figure 1, The framework will support a deployment API that will be
implemented through a Command Line Interface (CLI). Implementation of such high-level
interfaces will ease the adoption and use of the platform by users to deploy their HPC and Big
Data analytics applications. Moreover, a management API, likewise implemented through a
Command Line Interface (CLI), will enable system administrators to manage the overall

infrastructure and deployed applications.

These external APIs are provided by a modular Orchestrator component in which different
management modules can be seamlessly integrated by respecting a common internal API. In
BigHPC, the Orchestrator will support two main modules, namely a Virtualization Manager and
a Software-Defined Storage (SDS) Manager. However, by keeping the design of this
component modular, the project aims at ensuring a straightforward integration of other
management modules in the future (e.g., Software-Defined Networking Manager [KRV+15]).
This is a core component of the framework that will be responsible for managing the deployed
applications and infrastructure resources in a holistic fashion. Such will require collecting
application and cluster resource metrics from the Monitoring component, further described

next.

The Virtualization Manager is responsible for abstracting the heterogeneous physical
resources and low-level software packages (e.g., compilers, libraries, etc) that currently exist in
an HPC cluster and to provide a common abstraction so that both HPC and Big Data
applications can be easily deployed on such infrastructures. To achieve such a goal, this
manager will resort to virtual containers. Containers will be running user applications in an
isolated fashion and their placement, across the computational nodes, will take into account
the performance and reliability requirements of each application while providing optimized

usage of the infrastructures’ overall resources (i.e., CPU, RAM, network, I/O, energy).

The Storage Manager will ensure optimized configuration of shared storage resources
provided to applications and jobs running at the HPC infrastructure. This component will
follow a Software-Defined Storage [MPP+20] approach while providing the building blocks for
ensuring end-to-end control of storage resources, in order to achieve QoS-provisioning,

performance isolation, and fairness between HPC applications.

The Storage manager will decouple the control and data flows into two major components,

control and data planes. The data plane is a programmable multi-stage component distributed
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along the I/O path that enforces fine-grained management and routing properties dynamically
adaptable to the infrastructure status (e.g., rate limiting, |/O prioritization and fairness,
bandwidth aggregation and flow customization). Such a component can be employed over
compute, 1/O, and storage servers. The control plane comprehends a logically centralized
controller with system-wide visibility that orchestrates the overall storage infrastructure (i.e.,
data plane stages and storage resources) in a holistic fashion. The control plane is scalable and
enforces end-to-end storage policies, tailored for attending the requirements of exascale

computing infrastructures.

Finally, BigHPC will also provide a Monitoring component that will collect resource usage
metrics (e.g.,, CPU, RAM, network and storage I/O) for Big Data and parallel computing
applications deployed at the HPC infrastructure. The solution will collect both short-term and
long-term resource metrics to enable better management of deployed containers and
applications, and to understand their I/O patterns, which will be crucial for the Orchestrator

component and respective modules.

These components (i.e., the Orchestrator, Virtualization Manager, SDS Manager, and
Monitoring) will be integrated into a single software bundle that will be validated by resorting
to the infrastructures of both TACC and MACC center, and productized and explored

commercially by Wavecom.
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3. General Requirements

This section describes the requirements for scientific and Big Data workloads, while
contextualizing these with the infrastructures and software currently supported by MACC and

TACC supercomputers.

3.1. Scientific Applications

Types of Applications. Traditional scientific modeling and simulation tasks require large
slices of computational time, are CPU- or memory bandwidth- bound, and rely on iterative
approaches (parametric/stochastic modeling). Modern applications require tens to thousands
of nodes and significant, often tightly-coupled communication among distributed processors
and accelerators. MPI, CUDA, and shared-memory programming models facilitate the
applications' intra-node and inter-node communication in an optimal way, utilizing the
hardware’s capabilities. These applications often have infrequent, streaming 10 enabling
checkpoint and restart mechanisms for partial program executions. Traditional applications
originate from a broad range of scientific disciplines such as materials science, fusion,
geosciences, astrophysics, particle physics, and fluid mechanics. Examples of commonly used
applications with established user communities include NAMD, GROMACS, MILC, CHROMA,
OpenFOAM, and VASP.

Functional Requirements. BigHPC should provide the mechanisms to compile and execute
traditional HPC applications such that they can utilize available hardware capabilities and are
run in a performant manner. Hardware capabilities include processor-specific ISAs and
optimizations, RDMA supporting networks, and accelerator technologies such as GPUs. Thus
BigHPC should support multiple compilers and compilation options, MPI implementations and

shared-memory APIs (OpenMP), and libraries for accessing accelerators.

BigHPC should be able to run these applications within an HPC system’s existing workload
manager such as SLURM, without modifying the existing HPC infrastructure. It should mitigate
the interference between simultaneous executions of applications by combining information
about current resource usage and the expected resource usage of a scheduled application

execution, and running that application accordingly.
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Non-functional Requirements. The execution of applications on distributed computing
systems is prone to errors in compilation and runtime configurations that result in less than
optimal performance. BigHPC should provide sufficient information to the user to indicate
whether their application execution is using available hardware or is misconfigured in a
manner that all requested resources are not used. It should also not prevent the incorporation

of code profilers and debuggers into user workloads.

3.2. Big Data Applications

Types of Applications. Big data applications are often IO bound and have diverse execution
characteristics. They often are only supported in a restricted software ecosystem and do not
provide for flexible customization of compilation or runtime configurations. The main classes

of applications as defined for this project are characterized below.

Traditional Big Data: Applications in this category expect full control over and often exclusive
access to compute resources. Persistent services with interactivity is also often desirable.
Applications running on Hadoop, PySpark, or expecting database accessibility qualify.
Applications expecting a Jupyter notebook or other interactive GUI also qualify. MACC and
TACC cannot readily support these applications on HPC resources. Some Machine Learning

workflows fall into this category.

Machine Learning: Tensorflow and PyTorch are currently popular. Many of these workflows can
run on TACC HPC resources but often are challenging or impossible to compile, difficult to
maintain due to rapid development combined with inconsistent software engineering
practices (e.g. limited version-to-version API/ABI compatibility), and overly demanding on
filesystem 10 resources. The workflows can usually be configured to reduce load on the
filesystems with expert support. These applications generally can be greatly accelerated when
configured to use GPUs. There is an ongoing effort for distributed deep learning training
frameworks, such as Horovod, to accelerate training on multiple nodes. Currently, most
applications only support single-node execution, although many can leverage multiple GPUs if
they are collocated on a single node. As another optimization, data processing and machine
learning are often splitted in two different pipelines. Enabling machine learning frameworks

to integrate seamlessly with ETL jobs allows for more streamline production jobs, with faster
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iteration between feature engineering and model training. This possible approach breaks

down the barriers between ETL and continuous model training.

Life Sciences: These tend to be highly varied and bespoke applications with little community
by-in. The TACC Lifesciences Group maintains container images for thousands for these
applications. They are typically difficult or impossible to build in a software environment other
than where they were written. They are also often designed with pathological IO patterns
with little initiative or capability from the user community to improve the behavior. These
applications are supported by TACC but typically without taking advantage of native hardware

capabilities. They are also prone to overloading the filesystem with 10.

HTC Workloads: TACC has many projects with high throughput computing (HTC) workloads,
even on its capability systems. The workloads are characterized by customized work
schedulers running within the primary job scheduler (e.g. SLURM), persistent services
requirements, containerized applications, short executable runtimes, and relatively high 10
requirements. The applications and fields of science that could be classified as HTC are
diverse, ranging from analyses of particle physics data to functional brain mapping. TACC

supports these applications with difficulty.

Functional Requirements. BigHPC should enable the execution of the above described
classes of Big Data applications on traditional HPC infrastructure. It will provide the
mechanisms, where possible, to compile these applications such that they utilize existing
hardware capabilities. Their specific software requirements will be supported through
container technologies. Execution of persistent services such as databases will be possible
within the primary job scheduler of the host HPC system by standing up and tearing down

such services at the initialization and finalization of a job.

Intensive IO demands will be supported through a combination of the BigHPC monitoring
service and storage manager components. It should mitigate the interference between
simultaneous executions of applications by combining information about current resource
usage and the expected resource usage of a scheduled application execution, and running

that application accordingly.

Non-functional Requirements. BigHPC will provide sufficient information to the user for

them to determine whether their Big Data workloads are utilizing existing hardware and
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requested resources. Quality of service may be maintained for both remote and local 10

needs.

3.3. Infrastructure and Software

TACC is currently operating 6 major compute cluster resources, comprising nearly 16,000
nodes in total. TACC also maintains extensive storage resources and cloud infrastructure
resources. Of these resources, 4 have been identified as most appropriate for BigHPC
development and testing. These resources have been chosen due to their availability,
hardware heterogeneity, applicability to general HPC systems, and scale. These characteristics
ensure the design of BigHPC will address the broadest possible range of use cases. The 4
resources chosen as test beds are shown in Table 1. Node count and type, interconnect, and
filesystems for each resource are included in the table. Detailed descriptions of each node
type are provided in Table 2, while Table 3 details the storage backends supporting such

nodes. A description of each system follows.

Resource Stampede2 Frontera Primary | Frontera Liquid Longhorn
Compute Submerged
System
Nodes 4,204 Knights | 8,008 Cascade Lake | 90 Broadwell + | 96 IBM Power9
Landing 4 Single + 4 Double
Precision GPU Precision GPU
1,736 Intel
Skylake
Interconnect | Intel Mellanox Infiniband | Mellanox Mellanox
Omnipath HDR-100 (100GB/s) | Infiniband FDR Infiniband EDR
(100Gb/s) (50Gb/s) (100Gb/s)
Filesystem HOME 1 PB HOME 0.5 PB HOME 0.5 PB HOME 11 TB
Lustre Lustre Lustre IBM Spectrum
Scale
SCRATCH 18 SCRATCH 44 PB SCRATCH 44 PB
PB Lustre Lustre Lustre SCRATCH 5 PB
IBM Spectrum
Scale

Table 1: Overview of TACC compute clusters

| Copyright 2020 © bigHPC consortium



http://bighpc.wavecom.pt/

E1PC

Resource Node type | CPUs RAM GPU Disk
Stampede? | Skylake Intel Xeon 8168 192 GB N/A 200GB SSD
(2666 MT/s)
2 2.1 GHz CPUs DDR4 144 GB
/tmp
24 cores /CPU
2 HW threads/core
Stampede2 | Knights Intel Xeon Phi 7250 |96 GB (2666 | N/A 200 GB SSD
Landing MT/s) DDR4
11.4 GHz CPU 107 GB
16 GB /tmp
68 cores/CPU MCDRAM
4 HW threads/ core
Frontera Cascade Intel Xeon 8280 192 GB N/A 240 GB SSD
Primary Lake (2933 MT/s)
Compute 2 2.7 GHz CPUs DDR4 144 GB
/tmp
28 cores/CPU
1 HW threads/core
Frontera Broadwell [ Intel Xeon E5-2620 | 128 GB 4 NVIDIA | 240 GBSSD
Liquid +4Single | V4 (2133 MT/s) Quadro
Submerged | Precision DDR4 RTX 5000 | 144 GB
System GPU 2 2.1 GHz CPUs GPUs Jtmp
8 cores/CPU
1 HW thread/core
Longhorn IBM Power | IBM Power 9 256 GB 4 NVIDIA | 900 GB
9+4 (2666 MT/s) | Tesla /tmp
Double 2 2.3 GHz CPUs DDR4 V100
Precision GPUs
GPU 20 cores/CPU
4 HW threads/core

Table 2: Detailed description of TACC Compute Nodes.
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Resource Filesystem | #MDS/#0SS | OST Capacity Network | Filesystem
type 10 BW
Stampede?2 Cray HOME 2/4 HOME 280TB Intel SCRATCH
ClusterStor Omnipath | 300 GB/s
Lustre SCRATCH SCRATCH 280TB | 100
4/66
Frontera ES-18K-HD | HOME 2/4 HOME 125 TB Mellanox | SCRATCH1
(primary R Lustre Infiniband | 60 GB/s
compute & SCRATCH1 SCRATCH1 HDR-100
liquid 2/16 680TB SCRATCH2
submerged 60 GB/s
system) SCRATCH?2 SCRATCH?2
2/16 680TB SCRATCH3
120 GB/s
SCRATCH3 SCRATCH3
4/32 680TB
Longhorn IBM HOME+SCRA | HOME 11 TB Mellanox N/A
Spectrum TCH1/2 Inifiniband
Scale SCRATCH4.5PB | EDR
(GPFS)

Table 3: Detailed description of TACC Storage backends

Stampede2: Stampede? is the flagship supercomputer for the NSF's Extreme Science and
Engineering Discovery Environment (XSEDE) program. Stampede? provides HPC capabilities to
thousands of researchers across the U.S. and their international collaborators. It entered full
production in Fall 2017. Its peak Linpack performance (Rmax) was measured at 10.7 PFlops/s

and currently ranks as the #21 fastest supercomputer in the world.

Stampede?2 is composed of roughly 70% Intel Xeon Phi “Knights Landing” nodes and 30% Intel
Xeon “Skylake” nodes. The Knights Landing nodes have 16 GB of high speed MCDRAM,
capable of providing 450+ GB/s bandwidth to the processor. The Knights Landing nodes
efficiently support highly parallel workloads, while the Skylake nodes are capable of

supporting more general workloads.

Frontera Primary Compute: Frontera is the leadership-class system in the NSF's

cyberinfrastructure ecosystem. It entered production in August 2019 and debuted as the #5
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fastest supercomputer in the world at 23.5 PFlops/s. It provides resources to the most

compute intensive NSF projects.

The primary compute component of Frontera consists of 8008 Intel Xeon “Cascade Lake”
nodes. These nodes are capable of efficiently supporting diverse workloads, ranging from the
predominantly serial applications used in high throughput computing to tightly coupled,

massively parallel capability computations.

Frontera Liquid Submerged System: Frontera is augmented with a collocated 90 node GPU
subsystem. The commodity NVIDIA Quadro RTX 5000 GPUs are suspended in mineral oil in 4
Green Revolution Cooling ICEraQ racks. This configuration, unique at the time of it's
deployment, allowed 4 commodity (fan-cooled) GPUs to be attached to the same node while
maintaining a sustainable thermal density. These nodes provide high-density, single precision
compute capability to GPU-accelerated workloads that have a significant fraction of

single-precision or less flops, such as Machine Learning and Molecular Dynamics applications.

Longhorn: Longhorn is associated with the Frontera project and built in partnership with IBM
to support GPU-accelerated workloads requiring double precision or less flops. It is a
self-contained system with 96 IBM AC922 nodes with 4 NVIDIA Tesla V100 GPUs per node.

An overview of the above TACC systems’ software infrastructure isin Table 4 below.

Stampede2 Frontera Frontera Longhorn
Primary Liquid
Compute Submerged
Operating System CentO0S 7.8 Redhat 7.6
HPC Software suite Custom Custom Custom/NVIDI | Custom/IBM/
A NVIDIA
Provisioning LoSF LoSF xcat
User Management LDAP
Job resource manager SLURM
Node Health Check Custom
End-user portal TACC VisPortal N/A
Cluster Monitoring Nagios/TACC Stats TACC Stats
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Job usage reporting TACC Stats/XDMoD
Containers Singularity Singularity or Charliecloud or Singularity
UDocker
Numerical/Scientific Custom + Custom + Custom + Custom +
Libraries BLAS, LAPACK, [ BLAS, LAPACK, | BLAS, LAPACK, BLAS,
SCALAPACK, SCALAPACK, SCALAPACK, LAPACK,
FFTW FFTW FFTW,NVIDIA SCALAPACK,
FFTW,NVIDIA
/O Libraries
HDF5 (pHDF5), NetCDF (including C++ and Fortran interfaces),
Adios
Compiler Families GNU (gcc, g++, | GNU (gcc, g++, | GNU (gcc, g++, GNU (gcc,
gfortran) gfortran) gfortran) g++, gfortran)
Intel (icc, icpc, Intel (icc, icpc, Intel (icc, icpc, IBM (xlc,
ifort) ifort) ifort) xlc++, xlF)
NVIDIA (nvcc) | NVIDIA (nvce)
MPI Families Intel MPI, MVAPICH?2 IBM Spectrum
MPI,
MVAPICH?2
Development Tools GNU GDB,VTune, ARM FORGE GNU GDB
Power/Energy IPMI Sensors IBM
monitoring
management

Table 4: Overview of TACC Software Infrastructure.

MACC is the Portuguese open-science driven advanced computing facility, primarily devoted

to foster research and innovation in supercomputing, computational sciences, engineering

and artificial intelligence. MACC is currently operating Bob, a less than 1PFlop system with

600 nodes and is acquiring a new machine Deucalion with two computational clusters: a

x86-64 cluster including GPU compute nodes, and ARM compute nodes with Scalable Vector

Extension(SVE) targeting at 10PFlop peak, a total of 2165 nodes and supporting a dependable

high-performance 10PB storage. As Deucalion is expected to start production during the

lifetime of this project, end of 2020, start of 2021, we describe both resources (Tables 5 and 6)

to be used for BigHPC development and testing.

Resource

Bob

Deucalion ARM

De

ucalion X86

Deucalion
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ACCEL
Nodes 800 Intel Sandy | 1632 Fujitsu 500 AMD EPYC 33 AMD EPYC
Bridge FX700 with A64FX | Rome 7742 Rome 7742
Interconnec | Mellanox Mellanox Mellanox Mellanox
t Infiniband FDR | Infiniband Infiniband Infiniband
(50Gb/s) HDR-100 HDR-100 HDR-100
(100Gb/s) (100Gb/s) (100Gb/s)
Filesystem | HOME 110 TB HOME 50 TB NFS HOME 50 TB NFS HOME 50 TB
Lustre NFS
SCRATCH 11 PB SCRATCH 11 PB
SCRATCH 350 Lustre Lustre SCRATCH 11 PB
TB Lustre Lustre
Table 5: Overview of MACC compute clusters
Resource | CPUs RAM GPU Disk
Bob Intel Xeon CPU 32 GB DDR3 N/A 256GB HDD
E5-2680
Deucalion Fujitsux A64FX 32 GBHBM2 @ 1 N/A 512 GB NVMe
ARM GHz
12 GHz CPU
48 cores/CPU
Deucalion AMD EPYC Rome 256 GB N/A 240 GB SSD
X86 7742 DDR4-3200
2 2.25 GHz CPU
128 cores/CPU
Deucalion AMD EPYC Rome 512 GB 4 NVIDIA 240 GB SSD
ACCEL 7742 DDR4-3200 Ampere
A100-4
2 2.25 GHz CPU
128 cores/CPU

Table 6: Detailed description of MACC Compute Nodes.
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Bob: Bob is a supercomputer installed in a state-of-the-art data centre facility located in Riba
de Ave fully powered by sustainable energy sources. It entered full production in Summer
2019. Bob is part of the former Stampede 1 of TACC.

Deucalion: Deucalion will include several computing technologies namely leading edge x86
and ARM processors, as well as accelerating coprocessors. It consists of components that offer
high levels of efficiency to maximize application performance and minimize operational costs
by including high-performance low energy processors available on the market today.
Composed of three processing options, X86, X86+GPU, ARM it is able to address a wide range
of applications spanning traditional HPC to Al and data analytics and more. It is expected to

enter production at the end of 2020, start of 2021.

Table 7 describes the software supported by MACC supercomputers.

Bob Deucalion ARM Deucalion X86
Operating System CentOS 7.8 CentOS 8.1
HPC Software suite OpenHPC 2.x
Provisioning Custom Warewulf
User Management LDAP
Job resource manager SLURM
Node Health Check NHC
End-user portal No Open OnDemand

Cluster Monitoring Prometheus/Grafana

Job usage reporting Prometheus/Grafana/Open XDMoD

Containers No Singularity or Charliecloud or UDocker
Numerical/Scientific OpenHPC libs + OpenHPC libs + OpenHPC libs +
Libraries BLAS, LAPACK, Fujitsu optimized Intel MKL**
SCALAPACK, BLAS, LAPACK,
FFTW SCALAPACK,
FFTW
I/O Libraries

HDF5 (pHDF5), NetCDF (including C++ and Fortran interfaces),
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Adios

Compiler Families GNU (gcc, g++, GNU (gcc, g++, GNU (gcc, g++,
gfortran) gfortran), Fujitsu gfortran), Intel
Compiler suite Parallel Studio
Cluster Edition

MPI Families OpenMPI,MVAPIC OpenMPI, Fujitsu MVAPICHZ,
H2 MPI,MVAPICH?2 OpenMPI, Intel

MPI**

Development Tools GNU GDB,VTune GNU GDB, Fujitsu GNU GDB, Intel

debugger/profiler

Inspector, VTune

Power/Energy monitoring

management

IPMI Sensors

Atos Smart Power Efficiency
Management Suite

Table 7: Detailed description of MACC Software.
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4. Components Requirements

This section describes the specific requirements for each of the BigHPC components.

Moreover, we also briefly discuss the integration requirements for the platform.

4.1. Orchestrator

The Orchestrator will be the main entry point for users and system administrators. Users
resort to this component to deploy both HPC and Big Data jobs, while system administrators

use this component to manage virtualization and storage resources provided by BigHPC.

General requirements. A deployment API will be needed so that users can deploy both HPC
and Big Data jobs without requiring major changes to the way such is traditionally achieved.
This API will be based on current de facto standards used in HPC and Big Data. Notably, this
will require merging two distinct APIs, which is a challenge to be addressed by the BigHPC
project. For instance, on the HPC side, Slurm and LSF are widely used batch system schedulers
for clusters [YJG+03, 1+19]. On the other hand, for Big Data platforms it is important to
support the deployment of applications through widely used container technologies (e.g.,
UDocker [GCB+18] and Singularity [KSB+17]) and the execution of analytical tasks via
traditional APIs (e.g, Hadoop Spark jobs, TensorFlow, Pytorch).

Moreover, a management AP, also resorting to de facto standards (e.g., Ansible, Puppet, LOSF
[R+19,P+19,L+19]), must provide system administrators with the necessary tools for managing

the virtualized and storage resources provided by the BigHPC platform.

Integration Requirements. The Orchestrator will be collecting application and cluster
resource metrics from the Monitoring component, which will be provided to two modules -
the Virtualization Manager and the SDS Manager. These modules will be integrated into the
orchestrator through an internal APl that will be generic so that other specialized

management modules, outside the scope of this project, can be easily supported in the future.

Virtualization Manager requirements. The virtualization (container) manager will use
resource and past job performance data collected from the monitoring component to

correctly place containers on one of the resources that is currently available. This
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management component will choose container placement based on a variety of variables
including but not limited to, CPU architecture, storage space requirements, memory
requirements, interconnect, RDMA hardware/software stack, availability of specific
accelerators, theoretical or past performance metrics, and the availability of software to

support the above.

Storage Manager requirements. The Storage Manager will allow users and system
administrators to submit storage policies within the scope of a specific job, a set of jobs or for
the overall infrastructure. Namely, the BigHPC project will need to define a high-level
language so that users can specify storage policies for I/O prioritization, rate-limiting and data

placement. These are further discussed in Section 4.4.

4.2. Monitoring

The monitoring component is the element that will be responsible for keeping all the systems
under close and continuous observation, thus allowing HPC managers to keep track of the

clusters occupancy and their health and to the users their job execution.

General requirements. The monitoring of HPC is intended to be: a) non-intrusive by not
requiring the re-implementation or re-design of current HPC cluster software; b) efficient
while monitoring the resource usage of thousands of nodes without imposing significant
overhead in the deployed HPC workloads; c) able to store long-term monitoring information
for historical analysis purposes; and, d) to provide real-time analysis and visualization about

the cluster environment.

Integration requirements. The collected metrics and post analysis provided by this
component will be consumed by the Orchestrator and then used by the management tools of
the clusters. Monitoring will also comprise the aggregating of the gathered information at
different infrastructural levels. At the server level, with statistics for the node state such as
node up/down status, CPU, memory, network/storage and I/O usage; at the system/hardware
level, collect environment statistics such as power consumption, temperature, or AC unit
operation logs. These metrics will be correlated with the resource usage of specific jobs,

applications, users and projects.
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From the analysis and correlation of these metrics it will be possible to acquire knowledge on
the cluster performance; improve scheduling and applications management; and predict
malfunctions. Furthermore, such analysis will trigger real-time alarms Ffor system

administrators identifying potential performance or reliability issues.

To provide such a solution BigHPC will need to address distinct challenges. First, it will provide
support for persisting and analyzing long-term monitoring data which will allow leveraging
machine learning techniques to improve the prediction of possible performance bottlenecks

and failures.

Secondly, the solution design will need to be scalable, efficient and non-intrusive, thus
allowing it to efficiently monitor large-scale and heterogeneous infrastructures while
imposing a negligible performance overhead and avoiding the need to change (re-implement
or patch) deployed software and hardware components. Finally, the monitoring component
will export a rich API so that the Orchestrator modules and system administrators, the latter
through the proper visualization tools (e.g., Kibana, Grafana), are able to analyze and take

advantage of the collected metrics

Storage Monitoring. The Storage Manager module will collect infrastructural metrics from
the BigHPC's monitoring component. Storage related metrics such as I/O bandwidth,
throughput, latency, space quotas, and access patterns will be collected at different tiers and
granularities of the HPC center. Namely, these metrics will be collected at the application,

compute node’s local storage mediums, and at the shared parallel file system level.

Table 8 further details the monitoring requirements for BigHPC.

Monitoring
Challenge Requirements Current Approach
Real time metrics Provide metrics that present the | The current polling intervals
node state at a given instant are not real time metrics and
others only provide past job
metrics
Non intrusive Impact as little as possible the Capture metrics with bigger
performance of running jobs intervals to lessen the impact
Long time The data resulting from the Logs are discarded after
storage of logs will be stored for | specific intervals making it
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future analysis

impossible to perform post job
analysis

managers or job ownersin a
simple web environment
without the need to install
additional tools

Granularity Provide short and long time The granularity depends on the
metrics and also cluster vs node | type of tool used to monitor
vision according to the user or the cluster
manager needs

Visualization Provide visualization either for Self tailored applications with

complex installation scripts and
long learning curves

Heterogeneity

Work in all type of x86 and ARM
clusters

Most HPC centers develop
their own set of tools as a
monitoring solution. There are
some proprietary solutions
from hardware vendors

Storage and Network Monitoring

Challenge

Requirements

Current Approach

Measure |/O
performance of the
cluster

Monitor the IO performance of
the system identifying possible
bottlenecks and malfunctions

There are approaches on the
Lustre server and also on the
node but not targeted to the
job manager or job owner but
to the luster server manager

Network

Determine the network
performance and diagnose
possible faults while moving
data from the storage servers to
the nodes

This monitoring is usually made
at network level and not
integrated in the node
monitoring

Table 8: Big”HPC monitoring requirements.

4.3. Virtualization

The primary goal of creating the Virtualization Manager is to be able to run jobs on multiple
different clusters with different hardware and software transparently for the user. The
challenge of building the Virtualization Manager is combining all of the different parameters

and data that go into building an application on one machine and then using that to create an
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image and place ajob on one of a few types of machines. The two primary components of the

Virtualization Manager are the Container Curator and the Container Deployment manager.

Container Curation: In order to construct a container that can run on many HPC clusters we
must first enumerate the differences between the clusters we are targeting. Based on these
differences we will create container templates for different types of systems. Some of these
parameters are easily implemented on the command line of an executing container. However,
some will require changes to the application compile commands. Hardware specific details
such as the CPU vector instruction support or the RDMA hardware can necessitate compile
time changes. Depending on the application it may be worthwhile to compile multiple

versions of an application and then choose the appropriate version at runtime.

Another per-cluster difference is typically how the storage is tiered. Not all clusters have local
disks or even a work environment. Regardless of that, small changes, like mount point targets
can cause confusion in containers. This can be mitigated by a standardized container mount
point location and bind mounting the relevant file systems within the container, however, we
must first create a matrix of filesystems at each site and how they map to the container

defaults so we can programmatically change the file system bindings at job run time.

As a solution to the problems above we will characterize each important parameter as
hardware-specific or generalizable within the Virtualization Manager. Then container
templates for each cluster containing the generalized and the hardware-specific parameters
will be provided to application experts that can implement their specific application within our

BigHPC containers.

Container Deployment: With a working BigHPC container the container deployer must have
enough information in order to intelligently place a container on one of the supported HPC
resources. This data, ostensibly from the monitoring tool, will need to encompass both static
(CPU Sku, RDMA hardware, storage mount targets, etc) and dynamic (resource usage data,
resource availability, storage space availability, etc) parameters in order to: a) choose the
resources most closely aligned with the needs of ajob; b) select the correct BigHPC container

and; c) correctly configure the container for the specific cluster.
Some examples of possible allocation decisions based on resource usage data are:

e Prefer empty nodes
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e Prefer nodes/sockets with available memory
e Prefersocklet with idle cores
e Prefer nodes/sockets with higher or lower memory bandwidth

e Prefer nodes with specific fabric types

Because of the variety of different applications and the large expense of HPC clusters it is
incumbent upon us to use the available resources as efficiently as possible. In addition to the
resource usage data this effort includes characterizing each workload and feeding that data

into the virtualization manager.

Containers

Challenge

Requirements

Current Approach

Container software
have specific OS
requirements and
some features of
containers are only
enabled with some
kernel versions

The containers in use in this
project will only work on specific
versions of the Linux Kernel

One is confined by the
resources that they have
available if the Linux Kernel is
not new enough containers
cannot be run

Containers are locked
into a specific
architecture

Must be able to deploy to a
non-x86 cluster (arm64).

Containers are typically created
on the cluster they are used on
so the architecture is implied
during the creation.

Data Movement and Storage

Challenge

Requirements

Current Approach

Data ingress/egress
can be large and
consume large
amounts of time and
resources

Data locality has to be built into
the decisions of the
virtualization manager. It is
impractical to copy a large
dataset multiple times so this
may confine jobs to a cluster
where the dataset exists.

Typically users run on one
cluster so once the data is
there this is not an issue.

Data copying to local
disks from local shared
storage

Need to be able determine the
size of the input and output
data in order to make a decision
about where data should be for
the job (local disk, shared
storage, somewhere offsite)

On ajob by job basis this is
balanced between time to copy
and IO performance of
different tiers of file systems.
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Resource Utilization

Challenge

Requirements

Current Approach

Collecting Cluster-level
performance metrics

Have enough information about
either a. theoretical capacity or
b. regularly collected
performance metrics
(preferably both)

These types of metrics are
typically done during
acceptance during bring up
and/or after a maintenance and
they are rarely automated

Multi-node jobs within
containers

The virtualization manager must
be able to match versions of MPI
with RDMA hardware as well as
ethernet devices.

There are typically good
defaults for most clusters that
users can load to use MPI.

Performance

Challenge

Requirements

Current Approach

Different CPUs have
different vectorization
instruction sets

The virtualization manager must
be able to map specific CPU
SKUs to vectorization
instruction sets (AVX512, AVX2,
SVE, etc)

This is typically done at compile
time for each application. Some
applications will have support
for these and some will not.

Accelerators have
software drivers that
need to be exposed
within the container

The Virtualization Manager
must be able to map a specific
accelerator to a specific
partition in a cluster, then be
able to run a container with the
accelerator software stack
bound by the container

Containers are typically built on
the cluster where the software
stack exists.

Table 9: BigHPC virtualization requirements.

Broadly, and as depicted in Table 9, there are four major areas of challenges for the

Virtualization Manager: Containers, Data Movement and Storage, Resource Utilization and

Performance.

Container Challenges: Containers were originally built upon the Linux LXC extensions,

however, some implementations have created their own libraries to use the LXC extensions

along with other extensions (libvirt, cgroups, selinux, etc). This ecosystem means that there

are many options for running containers, however, finding the correct container for the

correct kernel versions and library versions is a non-trivial task. Luckily, it is only needed once

from each participating cluster. A partial solution to this is to pick one (or two) container types

| Copyright 2020 © bigHPC consortium

27



http://bighpc.wavecom.pt/

E1PC

we use and request each site enable the functionality that is needed. Containers are also,
implicitly, Linux based. While docker does run on Windows, for our use case Linux is the only

choice.

Data Movement and Storage Challenges: Data locality is core to HPC. Having the data, in a
fast (close) place is intrinsic to most tightly coupled (MPI) jobs. This can create a problem if the
input or output of the application is very large. Additionally, intercontinental data transfer has
been slow, historically. Moving large datasets from site to site across the internet needs to be
carefully considered. We may need to consider some applications with datasets that are too

big to transfer, local to a specific site.

Another challenge in data movement is that often clusters do not have matching file system
mounts. The Virtualization Manager will have to map each clusters’ mount point to a set of

generalized mount points within the BigHPC containers.

Resource Utilization Challenges: Most resource utilization challenges require us to make

generalizable abstractions for HPC-centric hardware such as RDMA networks and accelerators.
As described above, this will be mitigated by either including the site-specific hardware access
and drivers within site-specific containers or we will find a general way to access the hardware

and software needed without a site-specific container.

Another challenge revolves around how we get up-to-date performance information from all
of the clusters to inform the job placement decisions within the Virtualization Manager. In
order to mitigate this. There are a number of solutions to this problem ranging from getting
theoretical peak data and leaving the variables static to getting dynamic performance

measurements on a regular basis.

Performance Challenges: The last challenge is getting full CPU and Accelerator performance
of different CPU SKUs in an automated way. One option would be to compile for multiple
instruction sets and choose the correct version during runtime. Another would be to have

site-specific containers that have any vectorization built in.

4.4 Storage

In this section, we will provide the challenges and requirements for BigHPC's storage

component, while focusing on state-of-the-art infrastructures from MACC and TACC, namely
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the Deucalion and Frontera supercomputers. However, most of these requirements are

applicable to other supercomputers from these and other advanced computing centers.

HPC infrastructures are vertically designed, composed of several layers along the I/O path that
provide an assortment of compute, network, and storage functionalities. Storage resources

are organized into different tiers with different purposes and requirements.

RAM and local storage tier. At the higher tiers, compute nodes have access to local RAM
disks and persistent storage (e.g., SSD or HDD disks). These act as temporary storage
mediums that can be used by jobs and applications during runtime. After the job’s completion,

these storage devices are cleaned up and data is no longer persisted.

Requirements. These local storage mediums are typically accessed by a single job, running at
the compute nodes. In the BigHPC project, we aim at supporting multiple jobs in the same

node, by leveraging virtual containers, that will be sharing these resources.

The sizes of volatile disks depend on the amount of RAM at compute nodes that can be spared
by deployed jobs (i.e., currently the RAM size is 192 GB for TACC's Frontera and 256 GB for
MACC's Deucalion compute nodes). The size of persistent local disks ranges from 144GB to
512GB for TACC and MACC supercomputers. Frontera supports both SSD and HDD disks while
Deucalion will have only SSD disks. The speed of each disk is highly dependent on the
hardware configurations. Nevertheless, it is important to note that this speed varies across
faster mediums (RAM disks, SSD NVMes) and slower mediums (SATA SSDs and HDDS).

Shared file system tier. In the case where data does not fit these local storage mediums, it
needs to be available across different compute nodes, or it needs to be persisted between the
execution of job’s, a lower storage tier exposed as a shared filesystem is provided to users. In
both TACC and MACC supercomputers, the Lustre distributed file system, which is deployed at

the storage nodes, is used to export this shared interface to users.

HPC users have access to three different Lustre storage environments. The Home environment
is used mainly for storing the binaries of applications and scripts to execute them as jobs. The
Work (sometimes referred to as project or campaign storage) environment is used to store
medium term data from jobs and applications, while the Scratch environment is used to store

runtime data of jobs and applications.
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Requirements. The Lustre deployment is shared by thousands of jobs from different users. In
Deucalion, the Lustre deployment provides more than 11 PB of storage space with a sustained
throughput of 260 GB/s. In Frontera, it provides more than 44 PB of storage space with a
sustained throughput of 240 GB/s.

Finally, in terms of interfaces the RAM and local disks of compute nodes provide a block-device

interface, while the Lustre volumes provide a POSIX compliant API.

Ideally, an user’s job would leverage the different tiers depending on the necessary speed and
persistency requirements. In practice, the shared filesystem is usually overutilized thus
creating 1/O fairness issues that can significantly cripple the experience of HPC users. Such
problems are amplified by the emerging support of data-centric applications for data analytics
and machine learning that further stress the available storage resources. This is one of the
main reasons why storage performance (i.e., the access and retrieval of data from jobs and
applications) is now a major bottleneck that is limiting the performance of current HPC
applications [ECS+17, YDI+16].

In Table 10, we further detail the storage challenges and requirements of state-of-the-art HPC
centers. BigHPC has the goal of addressing these requirements in order to alleviate the

current performance bottlenecks of HPC storage solutions.

Performance

Challenge

Requirements

Current Approach

Ensuring I/O fairness
when multiple jobs are
accessing shared
storage resources (e.g.,
compute nodes local
storage or the shared

Runtime and dynamic
distribution of storage
resources’ bandwidth across
multiple jobs

Sustained throughput/latency

Typically this is a manual
process that is triggered when
an application is overloading
the storage resources

Automatic tools are static and

prioritization policies
for applications
requiring different
storage performance
levels

storage resources’ bandwidth
across multiple jobs

Different levels of sustained
throughput/latency given the
job’s priority requirements

file system) across multiple jobs cannot adapt to changes in
workloads and job scheduling
Ensuring I/O Specialized distribution of This requirement is currently

not met by the tools available
in HPC centers
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Improved storage
performance for small
file workloads

Small file workloads can easily
overload the shared file system
metadata servers.

Random access workloads on
small files, with several
metadata operations (e.g., open
and close) are major
performance bottlenecks

Adding more metadata servers
and sharding metadata across
these for improved scalability
and performance

Transparency and Automation

Challenge

Requirements

Current Approach

Transparent and
automatic data
placement across
storage tiers

Ensuring that data placement
across the different storage
tiers is transparent to users

Efficient and automatic data
placement for increased storage
performance and for reducing
the pressure over the shared file
system

Data placement is currently
done by users which requires
specialized knowledge about
the application storage
requirements and the HPC
infrastructure

Transparent and
automatic
enforcement of 1/O
policies

|/O prioritization and fairness
must also be done transparently
to users and system
administrators

The amount of storage
bandwidth used by a given job
is typically done manually by
users and HPC administrators

Integration

Challenge

Requirements

Current Approach

Data plane integration
with storage APIs

BigHPC's data plane must be
integrated with applications and
HPC storage layers in order to
control their I/O flows and
ensure the desired performance
and data placement policies

This will require supporting
standard POSIX and block
device interfaces

Current HPC storage solutions
are not SDS-enabled and only
target the shared file system
layer, thus not requiring this
type of integration

SDS control and data
planes

The data and control flows of
HPC storage resources will be
managed by a SDS control and
data plane, respectively.
The integration of these

Current HPC storage solutions
are not SDS-enabled and only
target the shared file system
layer
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modules in terms of design and
APIs needs to be accounted for

Orchestrator and job The SDS control plane must be Current HPC storage solutions

manager integrated with BigHPC's are not SDS-enabled and only
Orchestrator component. target the shared file system
Integration with the HPC job layer thus, not requiring this

manager (e.g., SLURM) isalsoa | type of integration
requirement for ensuring
efficient data placement and I/O
policies features

Monitoring The SDS control plane will These metrics are already
collect runtime metrics from the | collected but are provided to
HPC infrastructure. Namely, system administrators’
from BigHPC's Monitoring dashboards and not to an SDS
component controller

Metrics related to storage usage
(e.g., bandwidth, throughput,
latency, space quotas) must be
collected at the jobs and
storage resources granularity

Table 10: BigHPC storage requirements.

Requirements can be divided in three major groups, namely Performance, Transparency and

Automation, and Integration.

Performance. In order to alleviate the I/O interference currently observed for HPC shared
storage resources, while improving the performance of data-intensive jobs, BigHPC will need

to address the following requirements.

Multiple jobs may be running at the same compute node thus concurrently accessing the same
local storage mediums. Moreover, these jobs will be storing and retrieving data concurrently
from the shared HPC file system. Thus, BigHPC SDS solution will need to provide mechanisms
for minimizing 1/O interference between jobs and provide a fair usage of shared storage
resources. This will be achievable through novel I/O rate-limiting and scheduling policies that
will control the storage throughput and/or latency of jobs while having a global visibility of the
HPC infrastructure and deployed jobs. The policies will be enforced at runtime and in a
dynamic Ffashion thus, considering the lifetime of jobs and variations on their storage

workloads.
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As another goal, the previous policies will be extended to provide different levels of 1/O
performance according to each job’s requirements and the available capabilities of HPC
storage resources. Namely, it will be possible to define minimum, maximum and sustained |/O

throughput and latency requirements at the job granularity (I/O prioritization).

Finally, the SDS solution will also have the goal of alleviating the performance bottleneck
currently imposed by jobs considering random access workloads on thousands of small files.
These workloads are metadata intensive and can easily overload the HPC shared file system

metadata servers.

These requirements will be achieved by leveraging on the work on SDS systems, which has
been successfully applied to cloud computing infrastructures, but it is still in a very early stage
in the HPC field [MPP+20]. The outcome will be a SDS storage solution that is highly
programmable and can automatically adapt to different storage workloads. By having an
holistic vision of HPC jobs and infrastructural resources, this solution will ensure
quality-of-service and performance policies according to the requirements of each
job/application while providing fairness and prioritization in the access to shared storage

resources.

Transparency and Automation. Currently, most of the storage optimizations applied over
HPC storage resources are done manually by the users or system administrators. This requires
a deep knowledge about the applications/jobs being deployed and the HPC infrastructure and
software supporting these. BigHPC will advance the automation and transparency of storage

resources management by meeting the following requirements.

The decision on what storage tiers (i.e., local storage mediums at compute nodes or shared file
system) should be used for improving the storage performance of a given job is done
manually. Moreover, this decision may require significant code changes to the application
being deployed, and requires deep knowledge about the persistency guarantees offered by
each HPC data tier and on how data can be migrated across these. Thus, the simplest solution
is to avoid using the temporary storage tiers while storing all data in the shared file system,
where data persistency and access across compute nodes is always guaranteed. However, this
solution creates further pressure on the shared storage backend, leading to a severe 1/O
bottleneck.
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Therefore, another goal of BigHPC is to ensure that data placement can be done automatically
and in a transparent fashion thus, avoiding the manual intervention of users and system
administrators, and the need to modify the code of user applications. Moreover this
placement needs to be done efficiently in order to increase the storage performance of

applications while reducing the pressure over the shared HPC file system.

Finally, transparency and automation will also be key requirements for the I/O prioritization
and fairness policies described previously. Also, the SDS solution being devised in this project

will provide the necessary tools for accomplishing these requirements.

Integration. As explained previously, BigHPC storage solution will decouple the I/O control
and data flows into two major components, control and data planes. The data plane is a
programmable multi-stage component distributed along the I/O path (i.e., placed between the
applications and distinct storage tiers) that enforces fine-grained management and routing
properties dynamically adaptable to the infrastructure status, such as rate limiting, 1/O

prioritization, bandwidth aggregation and data placement.

The control plane (also referred as Storage Manager in this document) comprehends a
logically centralized controller with system-wide visibility that orchestrates the overall storage
infrastructure (i.e., data plane stages and storage resources) in a holistic fashion. The control
plane is scalable and enforces end-to-end storage policies, tailored for attending the

requirements of exascale computing infrastructures.

These two planes will require integration among them in terms of design and communication
APIs.

Moreover, since the data plane will be deployed between applications and storage layers, it
will require a transparent integration with these. Ideally this will be a non-intrusive integration

which will require exporting standard POSIX and block-device APIs.

The SDS control plane must be integrated with BigHPC's Orchestrator since this component
will be responsible for managing jobs and virtualization at the HPC cluster. Namely, the
integration with the Orchestrator and the HPC job manager (e.g., SLURM) is necessary for
knowing where (i.e., in which compute nodes) jobs will be deployed and to ensure the desired

data placement and I/O policies features for those jobs. The Orchestrator will also be
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responsible for exporting the storage management API that will allow users and system

administrators to define storage policies for different jobs and the overall infrastructure.

Finally, in order to efficiently enforce storage policies, the control plane will collect
infrastructural metrics from the BigHPC's monitoring component. Storage related metrics
such as I/O bandwidth, throughput, latency, space quotas, and access patterns will be
collected at different tiers and granularities of the HPC center. Namely, these metrics will be
collected at the application, compute node’s local storage mediums, and at the shared file

system level.

4.5. Platform Integration

0e®
am S
users system administrators

Orchestrator

Figure 2: Integration dependencies between BigHPC components

The Orchestrator, Virtualization Manager, Storage Manager and Monitoring solutions will be
provided as fully-functional prototypes. These prototypes will be integrated into a single
software framework that will be validated by resorting to the infrastructures of both TACC
and MACC centers. For this to be possible, as detailed in Figure 2, the Virtualization Manager
and Storage Manager (SDS control plane) will be bundled into the Orchestrator component,
thus exporting a unified point of contact for users and system administrators that wish to
manage their jobs and infrastructural resources. Moreover, the Monitoring component will
also require integration with the Orchestrator in order to provide real time metrics for jobs,

virtualization and storage management.
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Also, the project will provide real use-cases and a pilot for testing the proposed framework in
a real setup. They will provide real compute and data intensive applications that are already
being used in production and whose behaviour is well understood. These pilot applications will
be representative of the users' communities and will allow the validation and comparison of
the BigHPC framework against conventional HPC systems. This integration and validation step
will ensure that a coherent and cohesive software prototype is available at the end of the

project and can be later productized and explored commercially by Wavecom.
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5. Conclusion

This deliverable details the requirements for the BigHPC platform. The major goal of the
project is to ensure that the proposed solution is compliant with the management needs of
tradicional HPC jobs while meeting the novel functional and non-functional requirements

brought by Big Data applications.

The solution must also be compliant with state-of-the-art infrastructures, such as the ones
supported by TACC and MACC, and the legacy software supported at these centers.
Furthermore, it must simplify the deployment and management tasks done by users and

system administrators, while maintaining easy-to-use and familiar interfaces.

As another contribution, this deliverable discusses the challenges and requirements that must
be addressed by BigHPC's Monitoring, Orchestration, Virtualization and Storage components

in order to improve the performance and management of current HPC supercomputers.

The analysis presented at this document, for the general platform and for each of its main
components, will be key to drive the next major step of the project, namely the design,

architecture and APIs of the BigHPC framework.
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