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Executive Summary

High-Performance Computing (HPC) infrastructures are increasingly used to support Big Data

applications, whose workloads significantly differ from those of traditional parallel computing

tasks. This is expected given the large pool of available computational resources, which can be

leveraged to conduct a richer set of studies and analysis for areas such as healthcare, smart

cities, natural sciences, among others. However, coping with the heterogeneous hardware of

these large-scale infrastructures and the different HPC and Big Data application requirements

raises new research and technological challenges. Namely, it becomes increasingly difficult to

efficiently manage available computational and storage resources, to provide transparent

application access to such resources, and to ensure performance isolation and fairness across

the different workloads.

The BigHPC project aims at addressing these challenges with a novel management framework,

for Big Data and parallel computing workloads, that can be seamlessly integrated with existing

HPC infrastructures and software stacks. Namely, the project will develop novel monitoring,

virtualization, and storage management components that can cope with the infrastructural

scale and heterogeneity, as well as, the different workload requirements, while ensuring the

best performance and resource usage for both applications and infrastructures.

These components will be integrated into a single software bundle that will be validated

through real use-cases and a pilot deployed on both TACC and MACC data centers. Also, the

proposed framework will be provided as a service for companies and institutions that wish to

leverage their infrastructures for deploying Big Data and HPC applications.

This deliverable presents the architecture for the BigHPC framework while taking into account

the requirements described at Deliverable 1.1. In more detail, the document describes the

platform’s generic design, interfaces and APIs, the internal organization of the main

components (i.e., Monitoring, Virtualization and Storage), as well as their integration details.
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Glossary

API Application Programming Interface

CLI Command Line Interface

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

GPU Graphics Processing Unit

HPC High-Performance Computing

I/O Input/Output

INESC TEC Institute for Systems and Computer Engineering, Technology and Science

LIP Laboratory of Instrumentation and Experimental Particle Physics

MACC Minho Advanced Computing Center

MPI Message Passing Interface

QoS Quality of Service

RAM Random-Access Memory

RDMA Remote Direct Memory Access

RPC Remote Procedure Call

SDS Software-Defined Storage

TACC Texas Advanced Computing Center
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1. Introduction

HPC infrastructures and services are no longer solely targeted at highly parallel modeling and

simulation tasks. Indeed, the computational power offered by these systems is now being

used to support advanced Big Data analytics for fields such as healthcare, agriculture,

environmental sciences, smart cities, fraud detection, among others [OG+15, NCR+18]. By

combining both types of computational paradigms, HPC infrastructures will be key for

improving the lives of citizens, speeding up scientific breakthroughs in different fields (e.g.,

health, IoT, biology, chemistry, physics), and increasing the competitiveness of companies.

As the utility and usage of HPC infrastructures increases, more computational and storage

power is required to efficiently handle the amount of targeted data-driven applications. In

fact, many HPC centers are now aiming at exascale supercomputers supporting at least one

exaFLOPs (1018 operations per second), which represents a thousandfold increase in

processing power over the first petascale computer deployed in 2008 [RD+15, ECS+17].

Although this is a necessary requirement for handling the increasing complexity and scale of

HPC applications, there are several outstanding challenges that still need to be tackled so that

this extra computational power can be fully leveraged.

Management of heterogeneous infrastructures and workloads: By adding more compute

and storage nodes one is increasing the complexity of the overall HPC distributed

infrastructure and making it harder to monitor and manage. This complexity is increased due

to the need of supporting highly diverse applications that translate into different workloads

with specific data storage and processing needs [ECS+17].

Support for general-purpose analytics: The increased heterogeneity also demands that HPC

infrastructures are now able to support general-purpose applications that were not designed

explicitly to run on specialized HPC hardware and software environments, which was typically

the case for traditional modeling and simulation applications [KWG+13].

Avoiding the storage bottleneck: As a complementary challenge, by only increasing the

computational power and improving the management of HPC infrastructures it may still not

be possible to fully harness the capabilities of these infrastructures. In fact, many applications

are now data-driven and will require efficient data storage and retrieval (e.g., low latency
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and/or high throughput) from HPC clusters. With an increasing number of applications and

heterogeneous workloads, the storage systems supporting HPC may easily become a

bottleneck [YDI+16, ECS+17]. As pointed out by several studies, the storage access time is one

of the major bottlenecks limiting the efficiency of current and next-generation HPC

infrastructures.

To sum up, the BigHPC project aims to address three main challenges: 1) improving the

management of heterogeneous HPC infrastructures and workloads; 2) enabling the support

for general-purpose analytical applications; and 3) solving the current storage access

bottleneck of HPC services. Addressing these challenges is crucial for taking full advantage of

the next generation of HPC infrastructures.

The goal of this deliverable is to further detail the design of the BigHPC framework while

focusing on: i) the interfaces provided to HPC Users and System Administrators; ii) the internal

architectures and APIs of the Monitoring, Virtualization and Storage components and; iii) the

integration of these components into a fully functional framework.

The design and interface considerations discussed in this document are based on the

functional and non-functional requirements collected at Deliverable 1.1 and on the

requirements of the MACC and TACC supercomputers in terms of efficiently supporting a new

generation of Big Data application.

The document is structured as follows: Section 2 discusses the general architecture for the

BigHPC framework, the interfaces exported to Users and System Administrators, and

overviews the integration of the main modules composing this framework. Then, Section 3

details the architectures and APIs for each of the main modules, namely the Monitoring,

Virtualization and Storage components, while further highlighting their needs in terms of

cross platform integration. Section 4 concludes this deliverable.
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2. BigHPC Framework Architecture and Interfaces

BigHPC will design and implement a novel solution for monitoring and managing the

infrastructure, data and applications of current and next-generation HPC data centers. The

proposed solution aims at enabling both traditional HPC and Big Data applications to be

deployed on top of heterogeneous HPC hardware. Also, it will ensure that resources (e.g.,

CPU, RAM, storage, network) are monitored and managed efficiently, thus leveraging the full

capabilities of the infrastructure while ensuring that the performance and availability

requirements of the different applications are met.

2.1.  Architecture Overview

As depicted in Figure 1, The framework will support a deployment Command Line Interface

(CLI) that will ease the adoption and use of the platform by Users to deploy their HPC and Big

Data analytics applications as containerized jobs. Also, a management CLI interface will enable

System Administrators to manage the overall infrastructure and deployed applications (e.g., to

manage the lifecycle and placement of containers). Moreover, Users and System

Administrators will have access to a monitoring web interface for checking the overall status

of cluster resources and applications deployed on these (e.g., CPU, RAM, I/O usage at the

compute node or job/container level). During this document we will provide further details on

these interfaces.

The two CLI interfaces are provided by a logical component named Orchestrator that can

include different management modules. In BigHPC, the Orchestrator will support two main

modules, namely a Virtualization Manager and a Software-Defined Storage (SDS) Manager.

However, by keeping this a logical and flexible component, the project aims at ensuring a

straightforward integration of other management modules in the future (e.g.,

Software-Defined Networking Manager [KRV+15]).

The monitoring web interface will be achieved through a new Monitoring component that will

collect resource usage metrics (e.g., CPU, RAM, network and storage I/O) for Big Data and

parallel computing applications deployed at the HPC infrastructure. Short-term and long-term

metrics will be collected at different granularities, namely at the job/container level and at the
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compute node level. Furthermore, the Monitoring component will have access to general I/O

metrics provided by the HPC storage backend (e.g., Lustre file system [Lustre+21]).

Besides exporting metrics through the web interface, the Monitoring component will provide

an internal monitoring API so that the two Orchestrator managers can also have access to

these metrics. This will be key for these modules to ensure a better management of HPC

computational and storage resources.

Figure 1: General BigHPC design.
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The Virtualization Manager is responsible for abstracting the heterogeneous physical

resources and low-level software packages (e.g., compilers, libraries, etc) that currently exist in

an HPC cluster and to provide a common abstraction so that both HPC and Big Data

applications can be easily deployed on such infrastructures. To achieve such a goal, this

manager will resort to virtual containers. Containers will be running user applications in an

isolated fashion and their placement, across the computational nodes, will take into account

the performance and reliability requirements of each application while providing optimized

usage of the infrastructures’ overall resources (i.e., CPU, RAM, network, I/O, energy).

The Storage Manager will ensure optimized configuration of shared storage resources

provided to applications and jobs running at the HPC infrastructure. This component will

follow a Software-Defined Storage [MPP+20] approach while providing the building blocks for

ensuring end-to-end control of storage resources in order to achieve QoS-provisioning,

performance isolation, and fairness between HPC applications.

The Storage manager will decouple the control and data flows into two major components,

control and data planes. The data plane is a programmable multi-stage component distributed

along the I/O path that enforces fine-grained management and routing properties dynamically

adaptable to the infrastructure status (e.g., rate limiting, I/O prioritization and fairness,

bandwidth aggregation and flow customization). Such a component will be employed over

containers and compute nodes at the HPC infrastructure and will manage the storage I/O

flows to local storage mediums available at each compute node and the shared storage

backend (e.g., Lustre file system). The control plane comprehends a logically centralized

controller with system-wide visibility that orchestrates the overall storage infrastructure (i.e.,

data plane stages and storage resources) in a holistic fashion. The control plane is scalable and

enforces end-to-end storage policies, tailored for attending the requirements of exascale

computing infrastructures.

2.2.  User Interfaces

We now further detail the interfaces exported to BigHPC Users and System administrators.
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2.2.1 Deployment Interface

Container Scheduling and Management. Users will be able to specify workloads to the

Virtualization Manager Scheduler. The specification will consist of a configuration file

submitted through a CLI that prescribes the applications to run, how those applications

interact, locations of input and output files, required resources, and resource affinities when

appropriate. The Virtualization Manager will then schedule the workloads on the available

resources, incorporating resource usage data from the Monitoring Component to ensure

minimal interference of shared resources between workloads, and incorporating

specifications from the Storage Manager to ensure resources are available to support a

requested QoS. Users will also be able to query workload status, cancel their own workloads,

and hold their own workloads through the CLI.

Before a workload is scheduled, the optimal container image to run the available resources

will be obtained from the Virtualization Manager Repository. Users can download and upload

container images and templates that support their workloads to the Repository through the

CLI. They can also browse and search for available container images and templates through

the CLI and delete any container images or templates that are owned by them. The Repository

will match architectures to compatible or optimal container images and provide the Scheduler

with the appropriate container images on request.

Storage quality of service. Users will be able to specify quality of service policies when

deploying their applications/containers. The policies will be described through a simple

configuration file (e.g., by using open standard formats such as JSON or YAML) that will be

sent to the Storage Manager component. Also, these policies will be a subset of the

management I/O storage policies, which we describe in more detail below. For example, Users

may want to rate-limit the I/O bandwidth for a given application to ensure that it uses less

resources and gets deployed faster (i.e., spends less time in the submission queue waiting for

the needed resources).

2.2.2 Management Interface

Scheduling and Management. BigHPC Administrators will be able to start and stop BigHPC

reservations - blocks of nodes requested through the site-native job scheduler - through the
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CLI with an optional configuration file. Once the reservation is created the Virtual Manager

Scheduler will be available to Users and Administrators. Administrators will be able to submit

workloads, query workload status, cancel any workloads, and hold any workloads through the

CLI. They may also modify resources or QoS assigned to any workloads before or after the

workload is running.

Administrators will be able to access and modify the containers in the Virtual Manager

Repository. They may modify the metadata describing the workloads and architectures the

container supports. They can also modify the access permissions (e.g., read-only) to any

container image.

Storage Resources Management. Again, System Administrators will be able to specify policies

through simple configuration files (e.g., JSON or YAML) that will be submitted through a

command line interface and sent to the Storage Manager component. This component will

translate these instructions into storage I/O policies to be applied at the HPC infrastructure. In

more detail, we aim at initially supporting the following policies.

● Specify a maximum I/O bandwidth (rate-limiting) for HPC applications.

● Ensure I/O bandwidth fairness across a set of HPC applications.

● Ensure transparent usage of both local and shared storage resources for HPC

applications.

While the previous policies have the final goal of managing the storage resources being used

by HPC applications, such can be achieved by applying them at distinct granularities, namely,

for a given container (where the application is running), for the container(s) running on a

specific set of compute nodes, for a set of containers belonging to the same User, for specific

types of applications (e.g., AI, analytics, simulation), or even globally across the cluster.

BigHPC will explore these different granularity levels while also enabling a more fine-tuned

control of what type of I/O requests to include in such policies. For example, it will be possible

to distinguish data and metadata operations and specify different rate-limiting actions for

each, which is an important aspect for ensuring a better usage of the shared file system

backends at HPC centers.
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Note that, as discussed previously, Users can also submit the above policies for their

containers or applications through the deployment interface. In case there are any conflicting

objectives, for example, the User is requesting more storage bandwidth for a container than

the one specified by a System Administrator, the Administrator policies overrule conflicting

rules from Users.

2.2.3 Monitoring Interface

The monitor interface will be responsible for supplying the collected metrics from compute

nodes to both the Users, regarding their own jobs running on the cluster, and the

Administrators providing insight on the cluster usage as a whole, while allowing them to have

a real-time view of the system operation.

The User Interface displays user metrics regarding the containers running while allowing for

real-time visualization of the status of the running jobs. Users will be able to query the

monitor component, allowing them to profile the specific applications running at a given time

and also compare it with past jobs previously submitted to the cluster.

The Administrator Interface will allow System Administrators to visualize the collected metrics

by user or by node, or group of nodes, on a real-time basis and also access past cluster activity.

It will also be responsible for relaying triggered alarms to the System Administrator while

notifying them about a malfunctioning node or poorly behaved applications, for example, that

are starving HPC resources.

2.3.  Components Integration

Next, we describe how the three main BigHPC components, namely Monitoring, Virtualization

and Storage Managers, interact with each other. Further details about the features, APIs and

interfaces to do so are then provided, for each component, at Section 3.

As depicted in Figure 2, the Monitoring component must expose resource consumption

metrics to the Virtualization and Storage Managers. As explained next, each of these

managers may require different metrics (e.g., CPU, RAM, I/O) at different levels of granularity

(e.g., per container, per compute node) for their operation. Therefore, the Monitoring

component must enable an API with filtering or querying capabilities. Also, it will provide both
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real-time metrics and long-term data as requested by the manager components. Note that

these features are also important for the visual interface provided to Users and System

Administrators.

Figure 2: Dependencies between BigHPC components.

The Virtualization Manager will collect metrics such as: CPU and GPU utilization; local and

central file system I/O; Memory consumption; and network interfaces usage, from the

Monitoring component. Also, it will query the Storage Manager to gather information about

in-place storage policies for specific Users, compute nodes or containers in order to find

optimal placement strategies for new containers being launched. For instance, the Storage

manager will have information about I/O rate-limits being imposed for containers deployed on

a given compute node, therefore providing useful information about any leftover I/O storage

bandwidth that may be used by another application being deployed there.

On the other hand, the Virtualization Manager will expose topology information about the

placement of containers (i.e., the compute nodes where these are deployed on) and the users

that launched them. This information will be queried by the Storage manager to build global

cluster visibility and optimize storage policies across the infrastructure. Also, the Storage

Manager will collect storage I/O metrics at the container, compute node and shared file

system level from the Monitoring platform.
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3. Components Architecture and APIs

This section describes the specific architecture and APIs for each of the BigHPC components.

3.1. Monitoring Component

The Monitoring Component is responsible for collecting, storing and providing the collected

metrics from the system to both End-Users and System Administrators, for visualization and

notification purposes. It will provide relevant monitoring metrics to the Virtualization Manager

so it can choose the most suitable Compute Node(s) to deploy scheduled jobs (containers),

and to the Storage Manager so it can monitor I/O storage metrics and take informed decisions.

The monitoring component is in direct dependence of the Virtualization Manager, responsible

for job scheduling, and it will request the setup of a monitoring probe on the compute node

for each started job. These interactions are depicted in Figure 3. As explained previously, the

Orchestrator is a logical component that includes both the Virtualization and Storage

Managers.

Figure 3: Components interaction diagram for the Monitoring Component.
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3.1.1 Internal Monitoring Backend

The Monitoring Backend will support two different interfaces: an Internal interface that is

responsible for the communications inside the Monitoring Component; and an External one

that allows other components to interact with the Monitoring Backend.

As shown in Figure 4, the Monitoring Backend will serve as a middleware between the Users,

System Administrators, Orchestrator and the remaining monitoring components, namely the

Collectors and the Metrics Database. The Monitoring Backend will interact with the internal

components by means of  the following actions:

● Send Metrics

● Get Metrics

● Store Metrics

Send Metrics. The Monitoring Agents, or Collectors, will be responsible for gathering the

specified metrics in each Compute Node and for each job deployed by the Virtualization

Manager. This granularity will ensure that even short-term jobs will get profiled by the

Monitoring Component. The data gathered by local collectors will be shared by a message

broker to be stored in the Metrics Database on a periodic basis that can be configured by

System Administrators.

Get Metrics. To ensure the best usage of the available Compute Nodes, the Virtualization and

Storage Managers may poll for a specific set of metrics from the Compute Nodes directly from

the Collectors in real time and also at setup time before job scheduling .

Store Metrics. The Metrics Database will be responsible for storing the metrics in a time series

database for further processing and Visualization by Users and System Administrators. This

long term storage will enable a better understanding of past jobs that ran at the HPC

infrastructure.
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Figure 4: Architecture of the Monitoring Component.

3.1.2 External Monitoring Backend

It is through the External Monitoring Backend that Users and System Administrators will have

access to the Data Visualization Dashboard. This Dashboard provides an interface for viewing

stored metrics and also for gathering real time information about running jobs of each User.

The Visualization Dashboard will also trigger alarms for misbehaved or starving jobs and

display the current Compute Nodes availability. Additional through this Dashboard the Users

and System Administrators may also request the following actions:

● Get DB Data

● User Get Metrics

● Admin Get Metrics

Get DB Data. For a more detailed analysis the System Administrators may directly query the

Metrics Database and/or export it to other systems to perform offline evaluation of the
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deployed jobs at the HPC infrastructure. This may also be used to backup the Database to an

external source.

User Get Metrics. Send the metrics to the Users Data Visualization Dashboard upon user's

request. The users will be able to query their entries in the database to visualize it in the

dashboard. They may also download this information and store in their systems for further

analysis.

Admin Get Metrics. Send the metrics to the System Administrators Data Visualization

Dashboard. This will allow Administrators to have access to current and past performance

metrics from the HPC infrastructure in their Visualization Dashboard.

The Orchestrator Interface is made available to the Virtualization and Storage Managers, so

that these can interact with the Monitoring Backend. The requests to the monitoring interface

will be done by a REST API, and will allow the following operations:

● Launch Container

● Monitor Status

Launch Container. This operation will allow the Virtualization Manager to send information to

the Monitoring Backend regarding the scheduling of a container, to correlate it with the

corresponding user, and to enable the monitoring collector for this job to be deployed on the

corresponding Compute Node(s).

Monitor Status. This operation will be used by the Orchestrator components to collect metrics

about deployed jobs and the overall HPC infrastructure. In more detail, the Virtualization

Manager will be able to gather information about the utilization of computational resources

at different Compute Nodes (e.g., RAM, CPU, GPU), which will enable the placement of new

jobs in the most suitable nodes. The Storage Manager will have access to I/O monitoring

metrics for deployed containers and for the local and shared storage backends (e.g., compute

node local disks and Lustre file system) to ensure that storage policies are being enforced

correctly and adjust them if needed.
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3.2. Virtualization Manager

Figure 5: Component Interaction diagram of Virtualization Manager.

As depicted in Figure 5, the Virtualization Manager (VM) is composed of two services - the

BigHPC Scheduler and the BigHPC Repository. The Scheduler interfaces with the HPC site’s

native job scheduler (e.g. SLURM) and is responsible for processing, scheduling, and running

user submitted BigHPC workload requests. The Scheduler optimally schedules workloads and

associated QoSs based on information it obtains by querying the BigHPC Monitoring

Component through the Monitoring API and Storage Manager through the Deployment API,

respectively.

The Repository stores container images and build-templates and provides container discovery

and provisioning. It is the means by which users submit and access the containerized software

necessary to support their workload requests. Both services are accessible through an API

exposed as a Command Line Interface (CLI).
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The Scheduler and Repository may be hosted on external servers so long as they have access

to a site native job submission node (e.g. login node).

3.2.1 Virtualization Manager Scheduler

Figure 6: Architecture of BigHPC Scheduler.

The Scheduler manages BigHPC workloads (Figure 6). Users submit workload requests to the

Scheduler in the form of JSON or YAML files. These workload requests specify the system,

resources, and software necessary to execute the request. The Scheduler stores these

requests in a queue until the BigHPC Reservation is set up on the requested system by a

BigHPC Administrator, and the Reservation has the available resources to execute the request.

The setup of the BigHPC Reservation first launches a job within the site’s native job scheduler

(e.g. SLURM), which effectively reserves resources (computes nodes, cores, GPUs, etc.), then

starts a daemon that builds and maintains a representation of executing BigHPC workloads.

This representation includes the locations those workloads are running within the BigHPC

Reservation (affinity to compute nodes, cores, GPUs, etc.). The same daemon accepts user

workload requests, queries the Repository for the correct container images, queries the

BigHPC Monitoring component for resource usage, queries the Storage Manager for QoSs,
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and runs those requests such that they interfere minimally with currently executing

workloads. Users and System Administrators will submit requests to the Scheduler via a CLI

that allows them to perform the following actions:

● BigHPC Reservation Setup & Tear Down

● Workload Submission [POST]

● Workload Query/Hold or Modify/Cancel [GET/PUT/DELETE]

BigHPC Reservation Setup & Teardown. A major capability that the BigHPC infrastructure

enables is the ability to schedule workloads on resources in a way that minimizes interference

and provides specified Quality of Service within a traditional HPC environment. HPC sites

typically have their own native job schedulers which manage the execution of user jobs but no

notion of potential sources of resource contention or interference between jobs. BigHPC

interfaces with a site’s native job scheduler by building and submitting a native job script

processed from a BigHPC Administrator’s Reservation request submitted in a JSON or YAML

file. The Reservation request specifies the system and resources to be reserved for the BigHPC

Reservation. There is also a command to tear down the BigHPC Reservation.

The Scheduler maintains an internal representation of the workloads and their affinities to the

resources of the Big HPC Reservation. It also maintains a queue of workloads that can not yet

be run due to unavailable resources. A global QoS can be assigned to the BigHPC Reservation

which will be determined by querying the Storage Manager through the Deployment API.

Workload Submission [POST]. Users submit workload requests to the Scheduler via a CLI and a

JSON or YAML workload specification file. The workload specification file describes the

hardware resources, software resources, and optionally the QoS requested. It also describes

the workload to be run, whether services are persistent throughout the lifetime of the

workload, and the location of input and output.

The hardware resource description specifies device counts and affinities for each component

of the workload. The software resource description specifies the necessary container image to

obtain from the Repository for each component of the workload. The Scheduler will copy the

necessary container images from the Repository before the workload is scheduled to run. The

QoS specifies the network bandwidth and IOP rate the workload requests and is determined

by matching requested QoSs to their definitions in the Storage Manager. Individual QoSs are
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superseded by the BigHPC QoS. If the Scheduler is unable to satisfy a request it will notify the

user as soon as possible.

Workload Query/Hold or Modify/Cancel [GET/PUT/DELETE]. Users can query the status of their

active workload requests: Queued, Running, or Held. They can cancel or hold a request,

deleting it from the queue or preventing it from running until it is unheld. They can also

modify the hardware resources or QoS for any active request. These requests are submitted

via a CLI to the Scheduler.

3.2.2 Virtualization Manager Repository

Figure 7: Architecture of BigHPC Repository.

As depicted in Figure 7, the Repository will be used to access and maintain the container

images used to support requested workloads. The container images should support a

particular system/hardware configuration and will typically have user installed applications.

The Repository will consist of a database, a module specifying an API to the database, and a

daemon that uses that module API to service requests from Users (e.g. Users, Scheduler,

Administrators). Users will be able to submit commands via a CLI to the daemon which allows

them to make the following requests:

● Container Discovery [GET]
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● Container Image and Template Provisioning [GET]

● Container Image and Template Registration [POST/DELETE]

The container storage will be implemented as an Object Store database such as MongoDB.

The Repository may be external to the Scheduler which manages the workloads so long as tcp

and ssh access is available. Docker templates used to build available containers will also be

stored in the Repository if available. Descriptions of each request type that interacts with the

Repository are below.

Container Discovery [GET]. Users may explore what containers (and associated Docker

templates) are registered in the Repository. There will be commands submitted to the

daemon through a CLI to perform this exploration. These commands will check the Repository

and return a manifest of what containers are available. The manifest will include each

container and metadata such as which user registered the container, what hardware it

supports, what applications it supports, what services it supports, and what container runtime

it requires. These same metadata will be used to label each container image. User requests

may filter return results by container characteristics such as CPU and GPU architecture,

network, and application including compilers and dependencies. Service level metadata

including # containers/templates registered with and disk usage will be queryable. Containers

will also be labeled by HPC system compatibility when appropriate.

Container Image and Template Provisioning [GET]. Users may request registered container

images and docker templates via the CLI. The commands will return the container description

and copy the image or template to a location specified by the user in the command. The user

may then take that container to a local machine and modify it as necessary and then register

the modified container with the Repository. They may also request the docker templates used

to construct any of the registered containers and subsequently use the templates to build

whatever container images they require.

Container Image and Template Registration [POST/DELETE]. Registering a container image

makes it available to the BigHPC Scheduler and other Users for discovery and GET requests.

This process requires:

1. Submitting the container specification to the Repository via the CLI. The location of the

container image or docker template to submit must be specified in the command. The
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User must input required metadata including; which user registered the container,

what hardware it supports, the name of the application/workload it supports, what

services it supports, and what container runtime it requires. These metadata may be

specified via command line arguments or a YAML file.

2. The Repository daemon will copy the container or docker template used to build it to

the Repository server and store the container in the “container pool” (Object Store

Database). The container pool/database configuration will be specified as part of the

Repository configuration file.

3. The Repository daemon will run a validation command that checks the container

specification against discoverable container characteristics and also verifies the

container does not already exist. The container is successfully registered with the

Repository upon completion and available for use. If it cannot be verified it will try to

provide feedback to the User as to why (missing fields, incorrect specification).

Finally, container images may also be deregistered (deleted) using the CLI.

3.3. Storage Manager

HPC storage resources will be managed by following a design based on the SDS principles,

namely through a control plane and data plane as depicted in Fig 8. The Control plane is a

logically centralized component, although physically distributed for scalability and

fault-tolerance purposes. As explained in Section 2.2, it receives QoS policies (e.g., I/O

bandwidth, scheduling, fairness) from Users and System Administrators and enforces these

holistically throughout the data plane.
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Figure 8 - Architecture Overview for the Storage component.

The Data plane is composed of a set of stages that sit between HPC applications/containers

and the corresponding storage mediums. In BigHPC, the storage mediums can be local storage

drives at the compute nodes or the shared file system deployed at these infrastructures (e.g.,

the Lustre file system). The goal of these data plane stages is to enforce rules sent by the

Control Plane (e.g., rate-limiting of I/O requests). Next, we further detail the architecture and

interfaces for the control and data plane components.

3.3.1 Control Plane

The control plane, also referred to as Storage Manager in this document, is composed by the

components depicted in Figure 9.

The Metadata Store module keeps the user-defined policies being enforced at the HPC

infrastructure. These will be stored in a database that maps different policies (e.g.,

rate-limiting) to the corresponding data plane stages where they are going to be applied to.

Moreover, this component caches partial information about the monitoring metrics and

topology of the overall HPC infrastructure on two other databases. The monitoring

information will hold relevant metrics about data plane stages and the overall HPC

infrastructure such as CPU, RAM, network and storage I/O (including both local disks and

shared file system I/O metrics).
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Figure 9 - Storage Manager Architecture.

The topology information (e.g., graph describing the distribution of storage and compute

nodes, containers and data plane stages) will enable gathering additional information about a

given data plane stage such as the compute node where it is deployed, the type of storage

medium being accessed by it, or the container and User id associated with that data plane

stage.

Topology data is collected through a Deployment API that will enable the Metadata Store to

remotely query the Virtualization Manager, which is responsible for holistically managing the

deployment of applications and containers at the HPC infrastructure, in order to fill its local

cache. On the other hand, the Deployment API will be used by the Virtualization Manager to

query the policies being enforced at the Storage Manager (control plane). The latter
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information is valuable to do an optimized deployment of containers according to their

storage requirements and the available resources at the  HPC infrastructure.

The System Monitor module is responsible for collecting, aggregating, and transforming

unstructured metrics and statistics from data plane stages (e.g., IOPs), as well as, system-level

metrics from the BigHPC Monitoring framework (e.g., storage resources’ utilization, compute

nodes’ CPU, GPU and RAM usage). After being pre-processed, these metrics are stored at the

metrics database of the Metadata Store module. Information will be collected through two

distinct APIs. The Monitoring API will be used to query the BigHPC Monitoring framework,

while the Remote Procedure Call (RPC) Control API will be used to query information from

each deployed data plane stage.

The monitoring information, along with metadata concerning the user-defined policies and

the infrastructure topology, will be queried, combined and used by the Planning Engine. At

this engine, user-defined policies are parsed, validated, and translated into stage-specific rules

that can be holistically enforced for a single data plane stage (e.g., limit IOPs rate for a specific

container) or a number of stages to perform distributed enforcement (e.g., I/O fairness or

prioritization across containers of a given User).

The policy enforcement strategy is calculated through different control algorithms that

specify how the data plane handles I/O flows and define the most suitable place for policies to

be enforced. Examples of such control algorithms will include proportional sharing, isolation

and priority, feedback control, and machine learning techniques. The actions to be taken at

each data plane stage will leverage RPC control API.

The Storage Manager will be deployed across multiple dedicated servers in order to have a

scalable and fault-tolerant design. Namely, by leveraging the computational power of multiple

servers it will be possible to have a control plane that can handle the large volume of

monitoring metrics and topology information being collected, while taking timely and

accurate decisions, specified by the user-defined policies, across hundreds to thousands of

control plane stages. A distributed design will also enable tolerating failures of control plane

nodes without affecting the operation of the HPC infrastructure. Note that this will require

the use of coordination protocols across control plane nodes to ensure a coherent and holistic

vision of HPC resources.
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3.3.2 Data Plane

Figure 10 - Data Plane Architecture.

As explained previously and depicted in Figure 10, the data plane component will be

composed of multiple independent stages that sit between applications or containers and

storage resources (e.g., local storage medium or shared distributed file system). The goal is to

have a distinct data plane stage per application / container, while the control plane is

responsible for coordinating multiple stages when user-defined policies must be applied in a

group-wise fashion.

Each stage must be able to intercept I/O requests (Application API) from containers or

applications. This will be done by following two approaches:

● An intrusive approach that requires changing the code of applications to intercept and

differentiate I/O calls (e.g., metadata vs data, write vs read, background vs foreground

operations) while providing more control on the set of requests and corresponding

arguments that can be collected at the cost of less transparency and portability;

● A non-intrusive approach that provides standard storage interfaces, such as POSIX or

block device APIs, which can be used by unmodified applications. Namely, this can be
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achieved by resorting to tools such as FUSE or LD_PRELOAD [FUSE+21, LD+21]. This

approach provides greater portability and transparency for applications at the cost of

losing some of the differentiation capabilities (e.g., differentiating background and

foreground tasks) provided by intrusive techniques.

After collecting and differentiating I/O requests, each stage will be responsible for enforcing

rules (e.g., rate-limiting, encryption, compression) over specific operations of the applications

(e.g., data, metadata, background, foreground). The actions that must be applied are defined

and communicated, through the RPC Control API, by the control plane, which has the

necessary information and holistic visibility to do so. As explained previously, the Control API

will also be used by each stage to send monitoring metrics to the control plane. Finally,

storage requests will be forwarded by the data plane stage through a Storage API that will be

compatible with the corresponding storage medium (e.g., file system or block device).

In BigHPC, we will provide a library to build custom data plane stages. The main goal is to have

a generic solution that enables a simpler and faster implementation of stages, while

promoting code-reuse and portability for a wide range of applications and container

technologies.
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4. Conclusion

This deliverable details the architecture and interfaces of the BigHPC platform. As discussed

throughout the document the proposed design will enable HPC Users and System

Administrators to gain access to new monitoring, management and deployment interfaces.

These will be key to achieve a better control of HPC resources and the traditional HPC jobs and

Big Data applications deployed across them. Also, the design is aligned with the requirements

of state-of-the-art infrastructures, such as the ones supported by TACC and MACC.

As another contribution, the deliverable discusses the internal architectures and interfaces for

the BigHPC’s Monitoring, Virtualization and Storage components. Also, it shows how these

components interact and integrate with each other.

The information contained in this document will drive the next major step of the project,

namely, the implementation of the BigHPC framework.
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