
Scaling Containerization on multi-Petaflops CPU
and GPU HPC platforms

Amit Ruhela0000-0001-6547-714X, Stephen Lien Harrell 0000-0002-7304-6056, Richard Todd Evans 0000-0003-4992-9614

Texas Advanced Computing Center
Austin, Texas

E-mail : {aruhela, sharrell, rtevans}@tacc.utexas.edu

Abstract—Containerization technologies provide a mechanism
to encapsulate applications and many of their dependencies,
facilitating software portability and reproducibility on HPC
systems. However, in order to access many of the architectural
features that enable HPC system performance, compatibility
between certain components of the container and host is required,
resulting in a trade-off between portability and performance.
In this work, we discuss our experiences running two state-of-
the-art containerization technologies on four leading petascale
systems. We present how we build the containers to ensure
performance and security and their performance at scale. We ran
microbenchmarks at a scale of 6,144 nodes containing 0.35M MPI
processes and baseline the performance of container technologies.
We establish the near-native performance and minimal memory
overheads by the containerized environments using MILC - a
lattice quantum chromodynamics code at 139,968 processes and
using VPIC - a 3d electromagnetic relativistic Vector Particle-
In-Cell code for modeling kinetic plasmas at 32,768 processes.
We demonstrate an on-par performance trend at a large scale
on Intel, AMD, and three NVIDIA architectures for both HPC
applications.

Index Terms—Petascale, HPC, Containerization, Cloud Com-
puting, Singularity, Charliecloud

I. INTRODUCTION

Containerization is a powerful tool for scientific software
development and portability across systems. It considerably
reduces the time to build, test, and deploy applications by
encapsulating code and dependencies together, allowing them
to run on diverse platforms with minimal additional efforts.
High Performance Computing (HPC) infrastructures provide
tremendous computing capabilities along with optimized mes-
sage communication actualized through advanced features like
eager communication, shared memory, and Remote Direct
Memory Access making them ideal for intensive scientific
computation but challenging for software portability. Contain-
ers provide a promising way to hide system-level complexi-
ties, allowing researchers to focus on productive studies that
include COVID-19 research, climate modeling, agriculture,
healthcare, smart cities, e-commerce, deep learning, etc.

Containerization is a light-weight, low-overhead alternative
to full machine virtualization. With Docker’s [1] introduction
in 2013, containerization gained tremendous popularity. Since
then, several containerization techniques have been developed
primarily based on chroot, control groups, and Linux names-
pace features. Table I compares three state-of-the-art container-
ization approaches - Docker, Singularity and Charliecloud.

Docker is a user-friendly industry-standard containerization
approach designed to support stateful microservices. This
stateful approach creates security concerns on HPC systems
due to its need for root privileges. The security issues com-
bined with a lack of Message Passing System (MPI) support
and resulting scaling limitations make Docker unfit for an
HPC environment. Singularity and Charliecloud take different
approaches and are designed for HPC users. Once installed
with root privileges, Singularity and Charliecloud users can
run respective containers without elevated permissions.

Several studies in the past have focused on the performance
characterization of containerized workloads [2]–[7]. These
studies, conducted at small problem sizes, indicate near-native
performance by container-based techniques. However, none
of the prior studies have comprehensively shown the perfor-
mance, usability, and portability of state-of-the-art container
approaches at medium and large scale. This motivates us to
study the following two questions: (1) Does the performance
of container-based solutions on HPC clusters match bare-
metal runs at varying problem scales? (2) What are the
challenges and possible directions to exploit the state-of-
the-art container techniques at a massive scale?

TABLE I
FEATURES OF CONTAINERS

Attribute

N
am

es
pa

ce
s

C
gr

ou
ps

U
se

r
E

sc
al

at
io

n

D
ef

au
lt

N
et

w
or

k

R
oo

t
da

em
on

K
ee

p
ch

an
ge

s
af

te
r

re
st

ar
t

Su
ita

bl
e

fo
r

H
PC

Docker 3 3 3 Bridge 3 7 7
Singularity 3 3 7 Host 7 3 3

Charliecloud 3 7 7 Host 7 3 3

A. Contributions

To the best of our knowledge, this is the first study inves-
tigating the performance of containers at HPC petascale. The
main contributions of this paper are:

1) We present the challenges and possible approaches to
build HPC clouds with container-based approaches.

2) We present the changes required to adapt containeriza-
tion approaches to HPC infrastructures.

3) We establish the usability and portability of two
user-defined containerization stacks (Singularity, Char-
liecloud) at various problem scales.

4) We compared the performance of state-of-the-art con-
tainers at a scale of 6,144 HPC nodes containing 344,064
processes with MPI microbenchmarks.

5) We compared the performance of native and container
environments with two HPC scientific applications at up
to 138,968 processes on 2,592 nodes.

6) We establish the performance of two state-of-the-art
containers on four diverse HPC architectures: NVIDIA
Quadro RTX 5000, V100, Intel Cascade Lake, and AMD
Rome).

The rest of the paper is organized as follows: Section II
presents the prior research works and establishes the novelty
and basis of research conducted in this paper. Section III
presents the background of the Singularity and Charliecloud
container technologies and describes the benchmarks and
applications experimented in this paper. Section IV-A presents
the experimental setups and software configurations. Sec-
tion IV-B and Section IV-C provide detailed experimental
evaluations with microbenchmarks and HPC scientific appli-
cations. Finally, the conclusion are presented in Section V.

II. RELATED WORK

The technology landscape of containerization started with
the chroot system call in 1979 and was followed by FreeBSD
Jails in 2000, the Linux VServer in 2001, Solaris Containers
in 2004, Open VZ in 2005, Process Containers in 2006, Linux
Containers(LXC) in 2008, Warden in 2011, and Google’s
Let Me Contain That For You (LMCTFY) in 2013. Con-
tainerization then became enormously popular with Docker’s
introduction in 2013. Since then, tremendous efforts have
been made by researchers and industry to develop performant,
secure, and portable container techniques for both Cloud and
HPC environments.

In an early research paper by Xavier et.al. [5] from 2013,
the trade-offs between performance and isolation in Linux
VServer, OpenVZ, and LXC containers compared with tradi-
tional hypervisor-based Xen virtualization are presented. Later,
Carlos et al. [4] in 2017 evaluated LXC, Docker, and Singu-
larity’s performance through a customized single node HPL-
Benchmark and an MPI-based application on a multi-node
testbed. They also studied application-level performance using
a NAMD benchmark on a single GPU device attached with
an eight-core processor. In the same year, Younge et al. [2]
compared Singularity’s performance on a Cray XC-series
supercomputer and Docker on Amazon’s Elastic Compute
Cloud (EC2) and reported significant overheads in the cloud
environment mainly due to the use of Ethernet rather than the
Cray Aries interconnect.

In more recent studies, Hu et al. [8] investigated CPU, mem-
ory, and network bandwidth of Singularity containers whereas
Rudyy et al. [9] explored the scalability and portability aspects
of Docker, Singularity, and Shifter in the biological systems
using Alya code at 256 nodes. At the benchmarks level on a

medium system scale, Torrez et al. [10] demonstrated minimal
overheads by Charliecloud, Shifter, and Singularity containers.
In another interesting work, Cérin et.al. in Ref. [11] proposed
a pervasive methodology for containerization of HPC jobs
schedulers that shows better management of system resources
in an economical way.

Apart from performance studies, Canon et al. in [12]
reviewed the challenges and gaps in existing containerized
approaches for HPC applications. A survey by Bachiega et
al. [13] on recent research and challenges revealed a lack of
thorough studies involving containers and their performance in
the HPC environment. In light of this research and need, our
focus in this paper is to bridge the gap in prior research work
to establish the performance, portability, and usability of con-
tainers in the HPC environment using both microbenchmarks
as well as HPC applications with real workloads. We present
rigorous and comprehensive performance evaluations at petas-
cale on four leading Intel, AMD and NVIDIA, architectures.

This paper is an extension of our earlier findings published
in [14], [15]. We have run extensive experiments with scien-
tific applications at much larger and diverse system scales.

III. METHODOLOGY

Out of several container runtimes, we evaluate Charliecloud
and Singularity in this work. The goal is not to investigate
comprehensively but to manifest the simplicity, usefulness,
and performance of a few popular container types at petascale
clusters.

Containerization on HPC clusters is challenging mainly
due to access privileges and security requirements. Further,
batch processing of jobs along with container overheads adds
unique challenges to their usability. Portability of containers
is restricted by Abstract Binary Interface (ABI) compatibility
between the container and host hardware driver libraries
along with instruction compatibility with host architecture
(high speed interconnect drivers, GPU drivers, processor ISAs,
processor specific compiler optimizations). For actable non-
optimal performance, the container need not utilize specialized
drivers and hardware capabilities and only ISA portability is
required.

Singularity is a container platform specifically crafted for
HPC systems. Similar to other user space container systems,
Singularity bind mounts a container image and changes the
apparent root (chroot) to the container. Singularity goes a step
further to support the HPC ecosystem by mounting native
devices (e.g., GPU, network, IB) and configured filesystem
paths while also preserving Linux namespaces and user map-
ping inside the container. Singularity does not run a daemon
service, but must be installed by the root user for privilege
escalation. After building images from their own development
systems, or on HPC if fakeroot is configured, users can pull
images built with Singularity or Docker, and safely run them
on shared HPC resources. While images can be stored in the
cloud, they exist as single files on a filesystem, allowing them
to be shared and managed like all other files.

2

Charliecloud, a user defined software stack (UDSS), exploits
user and mount namespaces of Linux to run containers without
needing privileged operations and/or daemons. Any packaging
software capable of producing a standard Linux filesystem
can build container images that can be hosted on private or
public repositories (Dockerhub, Gitlab, NVIDIA NGC, etc.).
Charliecloud is a 800 lines of open source code that demands
minimal system control (sysctl) commands [16] to configure
on computing facilities, which elude most security risks.

A. Microbenchmarks and Applications

We evaluate the performance of all the container technolo-
gies at the micro-benchmark level with Intel MPI Benchmarks
(IMB) and at the application-level with two well-known HPC
scientific applications - MILC and VPIC.

IMB [17] is a suite of MPI benchmarks that perform
performance measurements for point-to-point and global com-
munication operations for a range of message sizes. We use
the standard MPI Bcast Latency benchmark, which measures
the one-way latency of the MPI broadcast operation. All
experiments are performed at least three times with one
Processes per node (PPN) and a full subscription for 10 to
1000 repetitions at various message sizes.

MIMD Lattice Computation (MILC) [18] is a Quantum
Chromodynamics (QCD) code that is used in the study of
strong interactions of subatomic physics to understand atomic
nuclei, the evolution of the early universe, and connections
with condensed matter physics. QCD describes the interaction
of fundamental matter particles called quarks and force carriers
called gluons, which bind to form the composite, hadronic
particles, such as protons and neutrons. Lattice QCD (LQCD)
is a numerical approach to QCD that approximates space
and time by a 4D lattice. Physical quantities are computed
by evaluating high-dimensional integrals using Molecular Dy-
namics and Markov-chain Monte Carlo methods. It’s an open-
source C89 code that utilizes the Highly-Improved Staggered-
Quark (HISQ) formulation of LQCD. All the core components
can be offloaded to GPUs through the QUDA library. On
CPU architecture (Cluster C), MILC is scaled to run with
72x72x72x144 lattice at 17K, 35K, 70K, and 140K pro-
cesses. On GPU architecture (Cluster A), MILC is run with
36x36x64x64 lattice on 32, 64, 128, and 256 V100 devices.
Performance numbers are reported for time to solve Conjugate
gradient, entire computations (Total Time), Linux reported
time in seconds, and memory consumption.

The Vector Particle-in-Cell (VPIC) model is a particle-
in-cell, first principles plasma physics application. It uses
a structured grid and compute particles and electromagnetic
fields [19]. An unreleased VPIC 2.0 beta is used, which
has been ported to the Kokkos [20] performance portability
framework [21]. The Kokkos OpenMP and CUDA backends
are used to perform the benchmarking runs. The dataset used
is 2D and uses all features of VPIC. The GPU experiments
use 31.1 million particles, and 88 million particles are used
for the CPU experiments. Performance is reported as overall
runtime in seconds.

IV. PERFORMANCE EVALUATION

This section describes the experimental setup, provides the
results of our experiments and presents an in-depth analysis
of performance results. Running experiments on four different
clusters ensures the generality of our performance analysis.

We use four distinct approaches to compare containerization
overheads. In Section IV-B2, we start with baselining over-
heads at the MPI initialization level and then investigate the
overheads at the collective communication level using MPI
broadcast operation. We then compare the overheads at the
container technology level with MPI Alltoall collective oper-
ation. Following in Section IV-C we investigate the overheads
at the application level with diverse hardware architectures on
petascale systems.

A. Experimental Setup

Cluster Configurations :

Cluster A : IBM OpenPOWER + InfiniBand (IB) +
V100 : Each node on system contains dual socket Power-9
processors with 20 physical cores on each socket operating
at 2.4 GHz, and contains 256GB DDR4 and 900GB of
local temporary storage. The interconnect is Mellanox
EDR (100Gb/s) InfiniBand with OFED version 4.5-2.2.9.0.
The operating system is RHEL v7.6 with kernel version
Linux 4.14.0-115.10.1.el7a.ppc64le. Each node contains four
NVIDIA V100 GPUs, each having 16GB GDDR6 memory.

Cluster B : AMD Rome + InfiniBand : Each node
on the Purdue Bell system contains dual socket AMD
Rome processors with 64 physical cores on each socket
operating at 2.0 GHz and contains 256GB physical memory.
The interconnect is Mellanox ConnectX-4 EDR 100Gb/s
InfiniBand (OFED version 5.0-2.1.8.0) and is configured in
a fat-tree topology that is 3:1 oversubscribed. The operating
system is CentOS Linux v7.8.2003 (kernel version Linux
3.10.0-1127.19.1.el7.x86 64).

Cluster C : Cascade Lake + InfiniBand : Each node on
compute system contains dual socket Intel Xeon Platinum
8280 processors having 28 cores per socket and cores
operating at 2.70 GHz speed and contains 192GB of main
memory. The interconnect is composed of Mellanox HDR
technology (OFED version 5.1-2.5.8) with full HDR (200
Gbps) connectivity between the switches and HDR-100 (100
Gbps) connectivity to the compute nodes. The computing
network is configured in a fat-tree topology with a small
oversubscription factor of 11:9. The operating system is
CentOS Linux release 7.8.2003 (kernel version Linux 3.10.0-
1127.19.1.el7.x86 64).

Cluster D : Broadwell + InfiniBand + Quadro RTX
5000 : Each node on system contains dual socket Intel Xeon
E5-2620 v4 processors with 16 physical processors operating
at 2.10 GHz frequency and equipped with 192 GB DDR4
and 128GB SSD memory. The interconnect is Mellanox

3

FDR 56Gb/s InfiniBand with OFED version 5.0-2.1.8. The
operating system is CentOS Linux v7.8.2003 with kernel
version Linux 3.10.0-1127.13.1.el7.x86 64. Four NVIDIA
Quadro RTX Turing 5000 GPUs having 16GB GDDR6
memory on each GPU are installed on each node.

Software Configurations : Containers used in this study
come from various sources, but very few of them ran without
any modification. Sources include repositories from dockerhub
[22], [23] and containers built for Cluster C . The software
configurations for benchmarks and both applications are listed
in Tables II, III and IV.

TABLE II
SOFTWARE CONFIGURATIONS - MPI MICROBENCHMARKS

Cluster Compiler MPI CUDA Container
Platform(s)

Cluster A GCC 7.3.0 MVAPICH2
GDR 2.3.4 10.2 Singularity

3.5.3

Cluster C GCC 9.1.0 Intel MPI
19.0.7 - Charliecloud

0.21 pre

TABLE III
SOFTWARE CONFIGURATIONS - MILC

Cluster Compiler MPI CUDA Container
Platform(s)

Cluster A GCC 7.3.0 MVAPICH2
GDR 2.3.4 10.2 Singularity

3.5.3

Cluster C GCC 9.1.0 Intel MPI
19.0.7 - Charliecloud

0.21 pre

TABLE IV
SOFTWARE CONFIGURATIONS - VPIC

Cluster Compiler MPI CUDA Container
Platform(s)

Cluster A GCC 7.3.0 MVAPICH2-GDR
2.3.4 10.2 Singularity

3.5.3

Cluster B Intel
19.0.5

Intel MPI 19.0.5 - Singularity
3.6.1

Cluster C Intel
19.1.1

Intel MPI 19.0.7 - Singularity
3.6.3

Cluster D GCC 8.3.0 MVAPICH2-GDR
2.3.4 10.1 Singularity

3.6.3

B. Micro-Benchmark Evaluation

We used three MPI benchmarks - MPI Init, MPI Bcast and
MPI Alltoall of Intel MPI Benchmarks suite [17] to compare
the performance of Singularity and Charliecloud containers
with bare metal runs. Each microbenchmark was run at least
five times on all the clusters to average out performance
variations.

1) Baseline performance: We baseline the performance
of containerization with bare metal runs with OSU Init mi-
crobenchmark. Figure 1 plots the time to execute MPI Init
operation at a system scale ranging from 3,584 processes (64
Nodes, 56 PPN) to 229,376 processes(4,096 Nodes, 56 PPN).
We observe that container setup and teardown overheads in
Charliecloud range between 6% and 14% at various system
scales.

2) Collective communication performance: We next estab-
lish the overheads of containerization with MPI collective op-
erations. Figure 2a plots the latency of MPI Bcast operation on
6,144 nodes with 1 process per node (PPN) at Cluster C . We
observe on par communication performance by Charliecloud
container with bare metal runs at all message sizes. The
performance numbers indicate that containerization does not
incur any significant performance overheads during runtime,
even at a large system scale. To discern setup and teardown
overheads of containers with communication collectives, we
compare total time to run the MPI Broadcast benchmark at 64,
128, 256, 512, 1K, 2K, 4K, and 6K nodes in Figure 2b. We
observe overheads less than 5 seconds to instantiate containers
on up to 6,144 nodes at 1 PPN.

 0

 100

 200

 300

 400

 500

 600

3,584
7,168

14,336
28,672

57,344

114,688

229,376

344,064

Ti
m

e
 i
n
 s

e
co

n
d

s
fo

r
M

P
I
In

it

Number of Processes

Native
Charliecloud

Fig. 1. Baseline performances of containerized and bare metal runs with
MPI Init benchmark on Cluster C

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

25 210 215 220

La
te

n
cy

 (
u
s)

Message Size (bytes)

Native
Charliecloud

 2
 4
 6
 8

 10
 12
 14

21 22 23 24 25 26 27 28

(a) MPI Bcast

 0

 10

 20

 30

 40

 50

 60

64 128 256 512 1,024 2,048 4,096 6,144

Ti
m

e
 i
n
 s

e
co

n
d

s
fo

r
M

P
I
B

ca
st

Number of Nodes (PPN=1)

Native
Charliecloud

(b) Total Time for MPI Bcast

Fig. 2. Performance comparison of Charliecloud containers against native
runs with 1 PPN on Cluster C

Since most of the applications in HPC intend to utilize the
full potential of computing cores, we, therefore, conducted our
next level of evaluations at the full subscription of the nodes.
Figure 3a shows the performance of broadcast collective algo-
rithm on 4,096 nodes on Cluster C . Processes per node (PPN)
was set to 56 in these experiments which fully subscribe to the
nodes on Cluster C . For containerized runs, we instantiated
56 containers through MPI job launcher on each node. We

4

observe a similar trend in the performance of Charliecloud
container and bare metal runs at all the message sizes. Again,
to expose the containerization overheads in Charliecloud, we
plot the total time to run the complete benchmark at 64, 128,
256, 512, 1K, 2K, and 4K nodes in Figure 3b. We observe an
additional 66 seconds of overheads in instantiating the 229,376
containers at 4K nodes. Given the scale at which containers
are instantiated, the overheads seem insignificant to run the
collective benchmarks.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

25 210 215 220

La
te

n
cy

 (
u
s)

Message Size (bytes)

Native
Charliecloud

 2
 4
 6
 8

 10
 12
 14
 16
 18

21 22 23 24 25 26 27 28

(a) MPI Bcast

 0

 100

 200

 300

 400

 500

 600

3,584
7,168

14,336
28,672

57,344

114,688

229,376

Ti
m

e
 i
n
 s

e
co

n
d

s
fo

r
M

P
I
B

ca
st

Number of Processes

Native
Charliecloud

(b) Total Time

Fig. 3. Performance of Charliecloud container against native runs at full
subscription of 4,096 nodes on Cluster C

C. Application Level Evaluation

1) MILC: MILC was run with Charliecloud on up to 140K
processes at Cluster C and Singularity on up to 256 NVIDIA
V100 devices at Cluster A. We set the number of trajectories to
one and steps per trajectory to 30. Figure 4 plots the time to
solve Conjugate Gradient (CG Time) and Linux time (time
command) for native and Charliecloud runs. Charliecloud
shows less than 10% overheads at various system scales.
Small performance differences are racked up by container
instantiation overheads, which is nearly 40 seconds for 0.14
million containers as investigated at the microbenchmark level
in Section IV-B. In practice, where MILC is allowed to run
for multiple trajectories and several steps per trajectory, the
instantiation overheads would become insignificant with long
running time of the application. Figure 4c plots the memory
consumption reported by the MILC application, which is
nearly identical for bare metal and container runs.

On IBM Power 9 Cluster A , MILC was run with the QUDA
library to offload computation to NVIDIA V100 devices. From
Figure 5, we observe that Singularity incurs less than 4%
overheads against bare metal runs. No significant difference
in memory consumption was observed at any system size.

 0

 200

 400

 600

 800

 1000

 1200

17,496 34,992 69,984 139,968

Ti
m

e
 i
n
 S

e
co

n
d

s

Number of Processes

Native
Charliecloud

(a) CG Time

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

17,496 34,992 69,984 139,968

Ti
m

e
 i
n
 S

e
co

n
d

s

Number of Processes

Native
Charliecloud

(b) Linux TIME

 0

 5x106

 1x107

 1.5x107

 2x107

 2.5x107

 3x107

17,496 34,992 69,984 139,968A
p

p
ro

x
im

a
te

 M
e
m

o
ry

 U
sa

g
e
 (

M
e
g

a
b

y
te

s)

Number of Processes

Native
Charliecloud

(c) Memory Consump-
tion

Fig. 4. Performance of Charliecloud container against bare metal runs with
MILC application on up to 2,592 nodes containing 140K cores on Cluster C

 0

 100

 200

 300

 400

 500

 600

32 64 128 256

Ti
m

e
 i
n
 S

e
co

n
d

s

Number of Processes

Native
Singularity

(a) Application Time

 0

 100

 200

 300

 400

 500

 600

32 64 128 256

Ti
m

e
 i
n
 S

e
co

n
d

s

Number of Processes

Native
Singularity

(b) Linux Time

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

32 64 128 256

A
p

p
ro

x
im

a
te

 H
o
st

 M
e
m

o
ry

 U
sa

g
e
 (

M
e
g

a
b

y
te

s)

Number of Processes

Native
Singularity

(c) Memory Consump-
tion

Fig. 5. Performance of Singularity container with MILC application using
up to 256 V100 GPUs on Cluster A

Apart from running time and memory usage attributes, we
also compare the CPU, device, InfiniBand, NUMA, DRAM,
and Lustre parameters and observed on par performance
values for all three runtimes. The plots for these attributes
are enormous and can be made available on request to the
interested researchers.

2) VPIC: The VPIC experiment includes four architectures;
two CPU architectures, scaled to 32,768 processes as seen
in Figure 7, and two GPU architectures scaled to 256 GPUs
as seen in Figure 6. Each experiment is run five times,
and the average of the runs are shown in the respective
figures. The software used for each experiment is available
in Table IV. At each scaling tier, all runs are done within
the same job and consequently use the same nodes, fabric
location, etc. This is done to reduce the variation associated
with running on different nodes and hence network topologies.
The authors note this can create a significant discrepancy
between “cold” to “warm” cache runs, as the container image
and application software and libraries are loaded on a shared
parallel filesystem. Although these outliers show a slowdown
in first test run within a job whether the test case is bare metal
or containerized, they do not show any change in overhead.
To combat this, the ”cold cache” outliers are pruned from the
averages. Singularity is used as the container platform in order
to analyze the overhead of different architectures.

In this experiment, we see in Figures 6 and 7 that architec-
ture does impact the containerization overhead. On average,
the RTX platform discrepancy is .29 seconds, while V100 is
2.46 at the same scale (Figures 6). Similarly, on the CPU
runs, Rome shows a 3.3 second difference, and Cascade Lake
shows the most considerable difference between runs at 13.53
seconds (Figures 7). Although this shows a 4x slowdown,
even in the worst case, it is unlikely that the containerization
overhead will be impactful for any jobs except those at the
largest scale or incredibly short run times.

Our experiments with microbenchmarks and applications
indicate that container solutions are an optimal choice for

5

 0

 50

 100

 150

 200

32 64 128 256

T
im
e

 in
 S
e
c
o
n
d
s

Native

Singularity

(a) NVIDIA V100

 0

 50

 100

 150

 200

32 64 128 256

T
im
e

 in
 S
e
c
o
n
d
s

Native

Singularity

(b) NVIDIA Quadro RTX 5000

Fig. 6. Performance of Singularity containers against bare-metal runs with
VPIC on up to 256 GPUs on Cluster A and Cluster D respectively. (smaller
is better)

 0

 100

 200

 300

 400

 500

 600

 700

 800

16384 25088 32768

T
im
e

 in
 S
e
c
o
n
d
s

Native

Singularity

(a) AMD Rome

 0

 100

 200

 300

 400

 500

 600

 700

 800

16384 25088 32768

T
im
e

 in
 S
e
c
o
n
d
s

Native

Singularity

(b) Intel Cascade Lake

Fig. 7. Performance of Singularity containers against bare-metal runs with
VPIC up to 32,768 cores on Cluster B and Cluster C respectively. (smaller is
better)

long-running applications. However, short lived applications
are benefited from the containers when their build process is
complex or time-consuming, and if computing platforms lack
required functionalities to run the applications.

V. CONCLUSION

Recent technological advancements in containerization run-
times have commenced a new trend of HPC software devel-
opment, which effectively reduces the build and deployment
issues caused by complex software dependencies. In this work,
we present the challenges of leveraging containerization within
HPC systems and showcased the feasibility of two state-of-
the-art container technologies. We explore the performance,
usability, and portability of container workflows through ex-
periments conducted at a petascale HPC cluster across tens of
thousands of processes. We conclude that developers, testers,
and end-users can leverage containerization on HPC systems
in a performant way, at large scale, to reduce software devel-
opment and maintenance efforts. The cost of performance at
scale is to build support for high-speed interconnects, such
as InfiniBand, into the containers. This support does not,
however, exclude their use in environments that only have
more generic communications support such as TCP/IP or
shared memory.

VI. ACKNOWLEDGMENT

This work is supported by UT Austin-Portugal Program, a
collaboration between the Portuguese Foundation of Science
and Technology and the University of Texas at Austin, award
UTA18-001217.

REFERENCES

[1] D. Merkel, “Docker: Lightweight Linux Containers for Consistent
Development and Deployment,” Linux J., vol. 2014, no. 239, Mar. 2014.

[2] A. J. Younge, K. Pedretti, R. E. Grant, and R. Brightwell, “A Tale
of Two Systems: Using Containers to Deploy HPC Applications on
Supercomputers and Clouds,” in IEEE International Conference on
Cloud Computing Technology and Science, 2017.

[3] C. Ruiz, E. Jeanvoine, and L. Nussbaum, “Performance Evaluation of
Containers for HPC,” in Euro-Par 2015: Parallel Processing Work-
shops, S. Hunold, A. Costan, D. Giménez, A. Iosup, L. Ricci, M. E.
Gómez Requena, V. Scarano, A. L. Varbanescu, S. L. Scott, S. Lankes,
J. Weidendorfer, and M. Alexander, Eds., 2015.

[4] C. Arango Gutierrez, R. Dernat, and J. Sanabria, “Performance Evalua-
tion of Container-based Virtualization for High Performance Computing
Environments,” Revista UIS Ingenierı́as, vol. 18, 09 2017.

[5] M. G. Xavier, M. V. Neves, F. D. Rossi, T. C. Ferreto, T. Lange, and
C. A. F. De Rose, “Performance Evaluation of Container-Based Virtu-
alization for High Performance Computing Environments,” in PDP’21,
2013.

[6] D. Brayford and S. Vallecorsa, “Deploying Scientific Al Networks at
Petaflop Scale on Secure Large Scale HPC Production Systems with
Containers,” in Proceedings of the Platform for Advanced Scientific
Computing Conference, 2020.

[7] Y. Wang, R. T. Evans, and L. Huang, “Performant Container Support
for HPC Applications,” in Proceedings of the Practice and Experience
in Advanced Research Computing on Rise of the Machines (Learning),
ser. PEARC ’19, 2019.

[8] G. Hu, Y. Zhang, and W. Chen, “Exploring the Performance of Sin-
gularity for High Performance Computing Scenarios,” in 2019 IEEE
21st International Conference on High Performance Computing and
Communications; IEEE 17th International Conference on Smart City;
IEEE 5th International Conference on Data Science and Systems
(HPCC/SmartCity/DSS), 2019.

[9] O. Rudyy, M. Garcia-Gasulla, F. Mantovani, A. Santiago, R. Sirvent, and
M. Vázquez, “Containers in HPC: A Scalability and Portability Study
in Production Biological Simulations,” in IPDPS 2019, 2019.

[10] A. Torrez, T. Randles, and R. Priedhorsky, “HPC Container Runtimes
have Minimal or No Performance Impact,” in 2019 IEEE/ACM Interna-
tional Workshop on Containers and New Orchestration Paradigms for
Isolated Environments in HPC (CANOPIE-HPC), 2019.

[11] C. Cérin, N. Greneche, and T. Menouer, “Towards Pervasive Con-
tainerization of HPC Job Schedulers,” in 2020 IEEE 32nd International
Symposium on Computer Architecture and High Performance Computing
(SBAC-PAD), 2020.

[12] R. S. Canon and A. Younge, “A Case for Portability and Reproducibility
of HPC Containers,” in 2019 IEEE/ACM International Workshop on
Containers and New Orchestration Paradigms for Isolated Environments
in HPC (CANOPIE-HPC), 2019.

[13] N. G. Bachiega, P. S. L. Souza, S. M. Bruschi, and S. d. R. S. de Souza,
“Container-Based Performance Evaluation: A Survey and Challenges,”
in 2018 IEEE International Conference on Cloud Engineering (IC2E),
2018.

[14] A. Ruhela, M. Vaughn, S. L. Harrell, G. J. Zynda, J. Fonner, R. T. Evans,
and T. Minyard, “Containerization on Petascale HPC Clusters.” Texas
ScholarWorks, November 2020.

[15] A. Ruhela, M. Vaughn, S. L. Harrell, G. Zynda, J. Fonner, R. T. Evans,
and T. Minyard, “Containerization on Petascale HPC Clusters,” 2020, in
State of Practice track of International Conference for High Performance
Computing, Networking, Storage and Analysis (SC20).

[16] “Charliecloud Documentation,” https://hpc.github.io/charliecloud/install.html.
[17] “Intel MPI Benchmarks,” https://github.com/intel/mpi-benchmarks.
[18] The MIMD Lattice Computation (MILC) Collaboration,

www.physics.utah.edu/d̃etar/milc, 2020, Last accessed September
27, 2021.

[19] K. J. Bowers, B. J. Albright, L. Yin, B. Bergen, and T. J. T. Kwan,
“Ultrahigh performance three-dimensional electromagnetic relativistic
kinetic plasma simulation,” Physics of Plasmas, 2008.

[20] H. C. Edwards, C. R. Trott, and D. Sunderland, “Kokkos: Enabling
manycore performance portability through polymorphic memory access
patterns,” Journal of Parallel and Distributed Computing, vol. 74, 2014.

[21] S. L. Harrell, J. Kitson, R. Bird, S. J. Pennycook, J. Sewall, D. Jacobsen,
D. N. Asanza, A. Hsu, H. C. Carrillo, H. Kim, and R. Robey, “Effective
Performance Portability,” in 2018 IEEE/ACM International Workshop on
Performance, Portability and Productivity in HPC (P3HPC), 2018.

[22] “Ibmcom/powerai - Docker Hub,” https://hub.docker.com/r/ibmcom/powerai/.
[23] “Centos - Docker Hub,” https://hub.docker.com/ /centos.

6

