
A Management Framework for Consolidated Big Data and HP

Project number: 45924

Deliverable 5.2 - Intermediate report on the integration, validation and
pilot activities

Date 31 March 2022

Activity 5 - Integration, Experimental Validation and Pilot

Version Intermediate

Disclosure Public

Authors: Amit Ruhela (TACC), João Paulo (INESC TEC), Júlio Silva (Wavecom), Mariana Miranda

(INESC TEC), Mário David (LIP), Ricardo Macedo (INESC TEC), Richard Todd Evans (TACC),

Samuel Bernardo (LIP), Stephen Harrell (TACC), Tiago Gonçalves (LIP), Zacarias Benta (LIP)

Reviewers: Bruno Antunes (Wavecom), João Paulo (INESC TEC)

Partners

Funding

Table of Content

Table of Content 2

Executive Summary 4

Glossary 5

1. Introduction 6

2. Platform components integration and validation 7

2.1. Gitlab workflow 8

2.1.1. Container registry 12

2.2. Jenkins pipeline as code 14

2.3. GitLab Runners 18

2.3.1. Steps to configure a runner 19

2.3.2. How to use runners in the pipelines 20

2.4. Kubernetes and Jenkins deployment 21

2.4.1. Kubernetes 21

2.4.2. Jenkins 22

2.4.3. Authentication 23

3. Pilot activities 25

3.1.Testbed definition 25

3.1.1. Access levels 25

3.2. Monitoring component 27

3.2.1 HECTOR 28

3.2.2 MONICA 28

3.2.3 CI/CD pipeline: Monitoring component 29

3.3. Virtualization component 31

3.3.1 Virtualization Repository 31

3.3.2 Virtualization Controllers and Executors 32

bighpc.wavecom.pt | Copyright 2021/2022 © BigHPC consortium 2

http://bighpc.wavecom.pt

3.4. Software-Defined Storage component 34

3.4.1 PAIO 34

3.4.2 PADLL 36

3.4.3 Cheferd 38

4. Conclusion 41

References 42

bighpc.wavecom.pt | Copyright 2021/2022 © BigHPC consortium 3

http://bighpc.wavecom.pt

Executive Summary

High-Performance Computing (HPC) infrastructures are increasingly sought to support Big

Data applications, whose workloads significantly differ from those of traditional parallel

computing tasks. This is expected given the large pool of available computational resources,

which can be leveraged to conduct a richer set of studies and analysis for areas such as

healthcare, smart cities, natural sciences, among others. However, coping with the

heterogeneous hardware of these large-scale infrastructures and the different HPC and Big

Data application requirements raises new research and technological challenges. Namely, it

becomes increasingly difficult to efficiently manage available computational and storage

resources, to provide transparent application access to such resources, and to ensure

performance isolation and fairness across the different workloads.

The BigHPC project aims at addressing these challenges with a novel management framework,

for Big Data and parallel computing workloads, that can be seamlessly integrated with existing

HPC infrastructures and software stacks. Namely, the project will develop novel monitoring,

virtualization, and storage management components that can cope with the infrastructural

scale and heterogeneity, as well as, the different workload requirements, while ensuring the

best performance and resource usage for both applications and infrastructures.

These components will be integrated into a single software bundle that will be validated

through real use-cases and a pilot deployed on both TACC and MACC data centers. Also, the

proposed framework will be provided as a service for companies and institutions that wish to

leverage their infrastructures for deploying Big Data and HPC applications.

This deliverable is focused on the BigHPC’s integration activities.

bighpc.wavecom.pt | Copyright 2021/2022 © BigHPC consortium 4

http://bighpc.wavecom.pt

Glossary

API Application Programming Interface

CI/CD Continuous Integration/Continuous Delivery

CLI Command Line Interface

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

GPU Graphics Processing Unit

CLI Command Line Interface

DevOps Development and Operations

DSL (Jenkins) Domain Specific Language

FOSS Free and Open-Source Software

GitOPS Pattern of configuration as code putting together Git and CI/CD tools

I/O Input/Output

INCD National Distributed Computing Infrastructure

INESC TEC Institute for Systems and Computer Engineering, Technology and Science

IT Information Technology

LIP Laboratory of Instrumentation and Experimental Particle Physics

MACC Minho Advanced Computing Center

MPI Message Passing Interface

PaC Pipeline as Code

RAM Random-Access Memory

RDMA Remote Direct Memory Access

REST Representational State Transfer

SCM Software Configuration Management

SDS Software-Defined Storage

SIG (Kubernetes) Special Interest Group

SQA Software Quality Assurance

TACC Texas Advanced Computing Center

YAML Yet Another Markup Language

bighpc.wavecom.pt | Copyright 2021/2022 © BigHPC consortium 5

http://bighpc.wavecom.pt

1. Introduction

The gap between the developers' environment and the complexity of BigHPC infrastructure

brings a challenge that can be solved by joining together teams that normally have different

perspectives. The developers and infrastructure managers provide the experience required to

understand the software delivery and operation tasks, but lack the contract to provide the

deployment. The DevOPS methodology focuses on the deployment of developed software

and is elected as the main practice during this activity, fixing the missing brick between

development and Information Technology (IT) operations.

Components integration, the next section, had the collaboration of Wavecom for defining the

prototype for the Pipeline as Code (PaC) and the PostgreSQL database endpoint. As described

in Section 3.2, the monitoring components development and testing provided a way to define

the Gitlab template for other projects. To test the template, INESC TEC also created a PaC for

SDS, detailed in Section 3.4, using the previously defined Gitlab template.

UT Austin and TACC teams had an important role in usability and performance evaluation, for

defining the required environments for the pilot and providing feedback from user

experience. This task will include most of these results in the next phase of the project. The

requirements and the configurations for the HPC environments are presented in Section 3.3.

All tasks will converge into the pilot deployment. Regarding the integration, usability and

performance evaluation, the pilot provides the full-fledged solution where the BigHPC

platform backend meets the frontend. GitOPS enters into practice over team collaboration

using the Gitlab platform, software quality practices adoption and supporting the research of

testbed solutions to abstract the real environments of HPC infrastructures. The pilot

development is dependent on the components development that are expected to be ready in

September 2022. Section 2 shows the current implementations and research work aimed for

the integration of all components and pilot deployment.

bighpc.wavecom.pt | Copyright 2021/2022 © BigHPC consortium 6

http://bighpc.wavecom.pt

2. Platform components integration and validation

The BigHPC project is bringing together innovative solutions to improve the monitoring of

heterogeneous HPC infrastructures and applications, the deployment of applications and the

management of HPC computational and storage resources. It aims as well to alleviate the

current storage performance bottleneck of HPC services. In order to keep all development

tasks tracking in a common path, some good practices are needed to get a shorter

development life cycle and provide continuous delivery and deployment with software quality.

GitOPS is a way to implement the continuous deployment and software quality best practices.

Using a GitOPS framework solution put into practice the methodology advantages, such as:

● deploy faster and more often

● easy and fast error recovery

● easier credential management

● well documented deliveries with complete history of every change made to the system

● share knowledge between teams with great commit messages

As a result, everybody would be capable of reproducing the tough process of changing the

infrastructure and also easily find examples on how to set up new systems.

In this work, we are creating the git workflow being adopted for application development and

the tools to answer the three components of GitOPS:

● infrastructure as code

● merging changings together

● deployment automation

We will show the technical capabilities and advantages of using this approach, adopting good

practices and pursuing fast innovation delivery. Developers should be kept focused on the

continuous development of the software. The IT operations team is responsible for the

infrastructure management.

bighpc.wavecom.pt | Copyright 2021/2022 © BigHPC consortium 7

http://bighpc.wavecom.pt

2.1. Gitlab workflow

As a starting point, the developers can use the web interface provided by Gitlab, to prepare

the environment to start working, by following DevOPS practices and contributing to the

GitOPS pilot deployment. For that, we prepared a quick guide to upload project code into

gitlab, depicted by the following steps:

● go to the entry page https://gitlab.com/bighpc;

Figure 2.1 - BigHPC Gitlab Group: entry page

● after authentication, users must select the group where the project should be created,

● then they can select the "New project" button to create a new repository,

● a new view opens with 4 options but here, the developer should only care for the blank

project and import project options,

● The user must select the blank project option when there only exists a local repository

or select import project if the repository was already published remotely;

bighpc.wavecom.pt | Copyright 2021/2022 © BigHPC consortium 8

https://gitlab.com/bighpc
http://bighpc.wavecom.pt

Figure 2.2 - Create a new project on Gitlab

Create a blank project:

● users fill the form as desired, where the project name is the label that appears in the

web interface and project slug is the url unique identifier that is appended in the path

to the group folder;

Figure 2.3 - Gitlab blank project form

bighpc.wavecom.pt | Copyright 2021/2022 © BigHPC consortium 9

http://bighpc.wavecom.pt

● afterwards, if an empty repository is created (not selecting the readme checkbox), a

page with instructions will appear. If the repository was created with a README file

the developer only needs to clone the repository with ssh or https.

Import project:

● the developer can select any of the available options to “Import project from”, but we

will focus here on the generic solution using "Repo by URL";

Figure 2.4 - Import a remote project on Gitlab

bighpc.wavecom.pt | Copyright 2021/2022 © BigHPC consortium 10

http://bighpc.wavecom.pt

● after clicking the button "Repo by URL" a form is opened (shown below);

Figure 2.5 - Repo by URL form to import a remote project into Gitlab

● One should place there the git repository URL using the https protocol (to sync also git

files if needed), while providing the corresponding username and password, in case the

repository is private.

● When the URL is added to the form, the project name and project slug will be

automatically filled.

● finally one must select the button "Create project", which will start the import process

bighpc.wavecom.pt | Copyright 2021/2022 © BigHPC consortium 11

http://bighpc.wavecom.pt

2.1.1. Container registry

Figure 2.6 - Gitlab container registry

Gitlab also provides a container registry organized by groups and projects. Each image should

be placed over each project with the following syntax:

<registry URL>/<namespace>/<project>/<image>

Example:

registry.gitlab.com/bighpc/monitoring/hector/hector:latest

Starting from the project level, there are three additional levels (namespaces). Taking into

account the defined testbeds, it is possible to define a specific namespace for each one in the

container registry level, without requiring the creation of additional groups.

<registry URL>/<namespace>/<project>/<testbed>/<image>

By applying the testbed definitions, the previous example would be translated into the

following scheme:

● development:

registry.gitlab.com/bighpc/monitoring/hector/dev/hector:latest

bighpc.wavecom.pt | Copyright 2021/2022 © BigHPC consortium 12

http://bighpc.wavecom.pt

● preview:

registry.gitlab.com/bighpc/monitoring/hector/pre/hector:latest

● production:

registry.gitlab.com/bighpc/monitoring/hector/pro/hector:latest

Private repository visibility is also extended to the associated container registry. The

authorization has two possible implementations for secrets management; i.e., when accessing

outside or inside a CI/CD context.

To access the docker registry inside a private repository from the developer workstation, a

personal access token or deploy token must be used. Both of these require the minimum1 2

scope to be:

● For read (pull) access, read_registry.

● For write (push) access, write_registry.

In the next step, one would run the following command to authenticate:

docker login registry.gitlab.com -u <username> -p <token>

It is also possible to configure a credential helper to avoid renewing the credentials every time

a docker command runs. Thus, one of the available programs can be selected.3

Gitlab CI/CD provides the variables CI_REGISTRY_USER and CI_REGISTRY_PASSWORD ,4 5

to access to the container registry. The variable CI_REGISTRY_PASSWORD has the same value

as CI_JOB_TOKEN that is generated by Gitlab when a job starts. CI_REGISTRY_USER is a6

gitlab-ci-token that is the user associated with the CI token.

After retrieving the authenticated session, docker commands could be run from the pipeline

using a special docker image that allows running docker commands. Using a defined service7

7 https://docs.gitlab.com/ee/ci/docker/using_docker_build.html#use-docker-in-docker

6 https://docs.gitlab.com/ee/ci/jobs/ci_job_token.html

5 https://docs.gitlab.com/ee/ci/variables/

4 https://docs.gitlab.com/ee/ci/variables/

3 https://github.com/docker/docker-credential-helpers

2 https://docs.gitlab.com/ee/user/project/deploy_tokens/index.html

1 https://docs.gitlab.com/ee/user/profile/personal_access_tokens.html

bighpc.wavecom.pt | Copyright 2021/2022 © BigHPC consortium 13

https://docs.gitlab.com/ee/user/profile/personal_access_tokens.html
https://docs.gitlab.com/ee/user/project/deploy_tokens/index.html
https://github.com/docker/docker-credential-helpers
https://docs.gitlab.com/ee/ci/variables/
https://docs.gitlab.com/ee/ci/jobs/ci_job_token.html
https://docs.gitlab.com/ee/ci/docker/using_docker_build.html#use-docker-in-docker
https://docs.gitlab.com/ee/ci/docker/using_docker_build.html#use-docker-in-docker
https://docs.gitlab.com/ee/ci/jobs/ci_job_token.html
https://docs.gitlab.com/ee/ci/variables/
https://docs.gitlab.com/ee/ci/variables/
https://github.com/docker/docker-credential-helpers
https://docs.gitlab.com/ee/user/project/deploy_tokens/index.html
https://docs.gitlab.com/ee/user/profile/personal_access_tokens.html
http://bighpc.wavecom.pt

with that image, it is possible to run docker commands such as docker build and docker push.

The syntax for docker push looks as follows:

docker push registry.gitlab.com/bighpc/<group name>/<project>/<image

name>:<tag>

2.2. Jenkins pipeline as code

The official domain for the project has been created and is the following:

https://jenkins-gl.bighpc.wavecom.pt/

Figure 2.7 - Pilot deployment translated into a pipeline

Jenkins Pipeline Library (JePL) provides easy means of using configuration files to get a PaC8

with Jenkins. JePL generates dynamically the required stages and implements the criteria that

allows to automate the deployment process with the following advantages:

● Software integration and testing using PaC.

● Facilitate the adoption of DevOps practices.

● Missing available FOSS alternatives or too many targeted alternatives such as Wolox CI.

● Uses (human-readable) YAML format, instead of Jenkins PaC DSL.

8 https://github.com/indigo-dc/jenkins-pipeline-library/

bighpc.wavecom.pt | Copyright 2021/2022 © BigHPC consortium 14

https://jenkins-gl.bighpc.wavecom.pt/
https://github.com/indigo-dc/jenkins-pipeline-library/
http://bighpc.wavecom.pt

● Uses Composer abstraction to orchestrate required services.

Gitlab platform also supports CI pipeline and, to start reviewing the BigHPC platform

deployment, the PaC example begins with the pipeline template with the draft in figure 2.7.

Figure 2.8 - Gitlab pipeline template preview

The pipeline in figure 2.8 has the required stages to test the code, test the BigHPC in the

defined testbeds environments and deploy the pilot:

● Build: build container images, compile required code.

● Development: Unit testing, linting (code style checks), static security tests.

● Preview: Integration tests, functional tests, dynamic security tests.

● Production: Delivery to production (create a release), automated deployment.

As a first step for the developers integration task, instead of using JePL, we start with the

Gitlab template since it turns out to be easier to start receiving feedback and collect the input

for the environments’ definition. The procedure can use the web interface provided by Gitlab

and the required steps are:

● Create a new project in Gitlab.

● Add pipeline from template.

bighpc.wavecom.pt | Copyright 2021/2022 © BigHPC consortium 15

http://bighpc.wavecom.pt

Figure 2.9 - Create a new pipeline using a template

Since the BigHPC project does not comply with requirements to have access to a gitlab

enterprise license, the available features are the ones provided by the community license. As

such, it is not possible to define a default template for the pipeline. Thus, the solution is to

replace the code with our default configuration.9

Check Pipeline results:

● Check the status of pipeline after passing the tests:

Figure 2.10 - Select the pipeline to review the results in Gitlab project

9 https://gitlab.com/bighpc/ci-cd/pipeline-templates/default/-/blob/main/.gitlab-ci.yml

bighpc.wavecom.pt | Copyright 2021/2022 © BigHPC consortium 16

https://gitlab.com/bighpc/ci-cd/pipeline-templates/default/-/blob/main/.gitlab-ci.yml
http://bighpc.wavecom.pt

● Check the pipeline stages:

Figure 2.11 - Check the pipeline stages in Gitlab project

● Check the jobs state:

Figure 2.12 - Check the job status after selecting a Gitlab pipeline

● Check the code execution and job execution logs:

bighpc.wavecom.pt | Copyright 2021/2022 © BigHPC consortium 17

http://bighpc.wavecom.pt

Figure 2.13 - Check the job logs after selecting a Gitlab job

JePL is going to be used afterwards with a generated configuration file from the defined

template using Gitlab in the previous steps. The background execution behind the scene can

be described as follows:

● Job translation to JePL to create a job in Jenkins.

● Submit the code to the defined testbeds and run the jobs.

● Connect the Gitlab project with the Jenkins instance, providing the reports in Gitlab.

● Perform the required experimental validation checking the automated results over the

pilot testbeds (development and preview).

● Deploy the validated release to the production infrastructure.

● Create the docker images to package the Software.

● Run the testing jobs in a TACC dedicated kubernetes cluster.

2.3. GitLab Runners

Gitlab offers shared runners for users to run their pipelines for free. But this feature has a

limitation. Currently GitLab offers 400 CI minutes per month per group for private projects. In

order to provide runners for BigHPC without limits, it was decided to have runners in TACC

infrastructure.

Two runners were deployed in the BigHpc VM:

● bighpc-runner-01: Runner deployed on the BigHpc VM with executor “Shell”.

bighpc.wavecom.pt | Copyright 2021/2022 © BigHPC consortium 18

http://bighpc.wavecom.pt

● bighpc-runner-02:Runner deployed on the BigHpc VM with executor “Docker”.

This is the default runner.

2.3.1. Steps to configure a runner

Get the registration token to link the deployed Gitlab runner with gitlab.com endpoint (figure

2.14).

Figure 2.14 - Get the registration token to install a Gitlab Runner

In order to install a runner, developers should login in the VM (BigHpc) and issue the following

commands:

● curl -LJO

"https://gitlab-runner-downloads.s3.amazonaws.com/latest/rpm/git

lab-runner_amd64.rpm"

● rpm -i gitlab-runner_amd64.rpm

● gitlab-runner register

bighpc.wavecom.pt | Copyright 2021/2022 © BigHPC consortium 19

http://bighpc.wavecom.pt

A file will be created to store the configurations at runner registration:

/etc/gitlab-runner/config.toml. The runners can be updated at any given time, by

modifying the config.toml, without the need of restarting the service.

2.3.2. How to use runners in the pipelines

Both runners have been configured and are available to the bighpc gitlab group

https://gitlab.com/bighpc. All the projects and subgroups below bighpc group are able to use

them as well.

Furthermore, when nothing is set out, the default runner of the pipelines is the

bighpc-runner-02. The following example shows a simple pipeline that will run, by default, on

that runner:

Figure 2.15 - Pipeline simple configuration example

The bighpc-runner-02 was configured to run the code inside a container which has a docker

version 20.10.10 image. This default can be changed to some other container by the user. This

is accomplished by inserting the “image” keyword as follows:

Figure 2.16 - Set specific docker image in pipeline configuration

On the other hand, if the bighpc-runner-01 runner is to be used to run the pipeline (running

directly on the VM), we must insert the “tags” keyword with the tag of the runner, as follows:

bighpc.wavecom.pt | Copyright 2021/2022 © BigHPC consortium 20

https://gitlab.com/bighpc.
http://bighpc.wavecom.pt

Figure 2.17 - Select a specific Gitlab Runner using tag keyword in pipeline configuration

2.4. Kubernetes and Jenkins deployment

2.4.1. Kubernetes

A Kubernetes cluster was deployed using the Kubespray tool on TACC Virtual Machines to

support the deployment of Jenkins.

https://gitlab.com/bighpc/ci-cd/inventory-of-bighpc-kubernetes

The Kubernetes cluster has the following main components:

● Services exposure to an external IP address: NodePort

● Storage: OpenEBS

After having Kubernetes up and running, the Jenkins deployment on Kubernetes was divided

in two parts:

● Jenkins Operator: manages operations for Jenkins on Kubernetes.

● Jenkins Instance: BigHPC Jenkins server itself.

The image below shows the view of octant, a web interface for Kubernetes that allows to

inspect a Kubernetes cluster and its applications. The Jenkins namespace is shown below:

bighpc.wavecom.pt | Copyright 2021/2022 © BigHPC consortium 21

https://gitlab.com/bighpc/ci-cd/inventory-of-bighpc-kubernetes
http://bighpc.wavecom.pt

Figure 2.18 - jenkins namespace in deployed kubernetes cluster for BigHPC platform

2.4.2. Jenkins

The BigHPC Jenkins server is accessible through the following URL:

https://jenkins-gl.bighpc.wavecom.pt/

bighpc.wavecom.pt | Copyright 2021/2022 © BigHPC consortium 22

https://jenkins-gl.bighpc.wavecom.pt/
http://bighpc.wavecom.pt

Figure 2.19 - BigHPC group and seed job in Jenkins Server

Seed Job: The seed job is a normal Jenkins job that runs the Job DSL script. The script

contains instructions that create additional jobs.

Folder BigHPC: Jenkins folder that was created by the seed job. The folder contains all

pipelines of all repositories belonging to the BigHPC GitLab group and subgroups.

2.4.3. Authentication

Authentication is crucial to manage the access to Jenkins. The BigHPC Jenkins instance has

incorporated the GitLab OAuth plugin as an authentication and authorization mechanism,

offloading authentication and authorization to GitLab.

The GitLab OAuth plugin authenticates by using a GitLab OAuth Application. Multiple

authorization strategies are available to authorize users. Thus, GitLab users are translated as

Jenkins users for authorization. GitLab organizations and teams are translated as Jenkins

groups for authorization.

The users that have access to BigHPC Jenkins are the ones that belong to the BigHPC GitLab

group.

When a user connects to Jenkins for the first time, he is asked to authorize the application

“Jenkins Instance” to have access to the user’s API. This application is maintained by “Jenkins

bighpc.wavecom.pt | Copyright 2021/2022 © BigHPC consortium 23

http://bighpc.wavecom.pt

INCD” user, a user bot that is managed by INCD. This procedure is illustrated in the image

below.

Figure 2.20 -Authorize Jenkins Instance in Gitlab.com platform

bighpc.wavecom.pt | Copyright 2021/2022 © BigHPC consortium 24

http://bighpc.wavecom.pt

3. Pilot activities

For the BigHPC platform, it was defined in Deliverable 5.1 two kinds of testbeds: development

and preview. In Section 3.1, the management of the testbeds is going to be reviewed by taking

into account the behavior of real HPC clusters. Related to the components integration, the

work of each activity will also be summarized: Monitoring (Section 3.2), Virtualization (Section

3.3) and Storage (Section 3.4).

3.1.Testbed definition

The creation of a testbed is the first step to accomplish a working execution environment for

the end user. It creates a safe environment for verifying software compatibility as well as the

platform’s ease of use.

The usage of batch systems as a resource for computing data and processing information is

not a trivial process for the average user, so we have to take into account the less experienced

users and grant them some resources to experiment and validate the data resulting from the

simulations/jobs that have been submitted.

3.1.1. Access levels

Depending on the experience of the user, the access levels to the BigHPC platform should

take that into consideration, distinguishing the more experienced users from the least

experienced ones.

The proposal has two access levels: A1 and A2. Access to the resources is granted to those

who have more extensive knowledge of the platform, and to limit those who are less familiar

with it or advanced users who simply wish to test the new software.

A1 level

Intended for users that have limited or no experience with the platform, both in the

submission of jobs and the way that problems should be prepared for the usage of

such a platform. Some more extensive support is required to help these users become

bighpc.wavecom.pt | Copyright 2021/2022 © BigHPC consortium 25

http://bighpc.wavecom.pt

familiar with the platform and provide some basic examples of how a job should be

submitted, as well as tutorials on how to connect to the platform. We propose the

creation of a wiki with information about the available resources, both hardware and

software, and the examples that steer the users in the correct way to interact with the

platform.

More experienced users can also be granted this level of access as a “staging” area for

the real work to be done, the time and resources granted could be used to test the

new software and verify if the problem in hand can take advantage of different

resources, such as cpu ram, storage space and software, that are available, as well as

propose the installation of specific new software and compilers.

The proposal is that 5% to 10% of the nodes should be reserved for such an access

type, depending on the number of users that will be granted A1 level access. If the

majority of users are new to the platform, 5% of the cluster may be provided. If the

majority of users are experienced ones, this percentage would increase to 10% of the

available nodes so that they can validate their new hypothesis (specific combination of

software and compilers) more rapidly and move to the A2 level quicker.

Limits to the maximum number of nodes that are used simultaneously and for how

much time, should be established in order to prevent resource starvation. The proposal

is that a fraction of 25% of the nodes for the maximum of 4 days, is the best solution.

Regarding the time to be granted to this access level, the proposal is 25.000 core/hour

within a maximum of two months.

After the users have experienced the system and validated all combinations of

available software, eventually proposing new versions to be installed and tested, they

can be granted access to the second level.

A2 level

Users that are granted this access level belong to three categories:

1. They have previous experience with such a platform and have been

granted access to the A2 level immediately;

bighpc.wavecom.pt | Copyright 2021/2022 © BigHPC consortium 26

http://bighpc.wavecom.pt

2. They are experienced users that validated their new software

combination using the A1 level;

3. They are new users that gained some initial experience using A1 level.

These users expect to find a platform that has no issues regarding compatibility of

software version combinations. This means that all the software combinations that

they might use to accomplish their final goal must have been tested previously,

whether they have used the A1 access level to validate them or they have tested those

combinations in similar platforms.

This access level must not be used for such validations, since it is a “pre-production

grade” access level.

Users can take advantage of this access level to pre-process data for their final job, or

just to expose their tests to a production level platform.

The allocated resources for this access level should be about 10% of the cluster and

the time to be granted for this access level should be between 25.000 to 100.000

core/hour within a maximum of two months time frame.

With the usage of these testbed access levels, we can grant users time to both, experience the

platform, and prepare for the submission of some pre-process data needed for the final job.

We believe that by defining two access levels, we can separate the lengthier and larger time

consuming tests from the shorter ones, allowing the users to concentrate on their tasks and

the platform administrators on the support. The creation of testbeds allow the platform

administrators some insights regarding the requirements of the end users, allowing us to

prepare and fit the final platform for the end users.

3.2. Monitoring component

BigHPC’s Monitoring solution is composed of two interconnected components; HECTOR and

MONICA, which are further detailed on Deliverable 2.2 [D2.2].

bighpc.wavecom.pt | Copyright 2021/2022 © BigHPC consortium 27

http://bighpc.wavecom.pt

3.2.1 HECTOR

HECTOR is a simple probe that runs inside a container with the aim of continuously monitoring

compute nodes and reporting their state to MONICA.

Software requirements. HECTOR only requires singularity to be installed on the system. The

current prototype has been successfully tested both at TACC with singularity version

3.7.2-3.el7 and at MACC with singularity version 3.5.3.

Hardware requirements. HECTOR is focused on being lightweight and capable of running in

any Linux x86 system that supports singularity therefore it has no system hardware

requirements or dependencies over any hardware component.

3.2.2 MONICA

MONICA is the architecture that comprises all services related with the storage, management

and visualization of metrics.

Software requirements MONICA requires docker engine and docker compose to be installed

on the system. The current prototype has been successfully tested at TACC with Docker

version 20.10.12, and docker-compose version 1.29.2. At MACC it was tested with Docker

version 20.10.7 and docker-compose version 1.25.0.

Hardware requirements. The hardware requirements are mainly dependent on the total

number of nodes being monitored by the HECTOR probes and the number of queries to the

database.

In order to handle 100 parallel HECTOR probes, sending metrics from the same compute

node, with an equal collection period of 10 seconds, the following values can be used for

reference as the minimum hardware requirements:

● 8GB of RAM ;

● 4 Core CPU clocked at 1.9GHz;

● 20GB of disk space.

It was observed that the largest consumption of resources was due to Postgres, the memory

consumption increased from 40% to 60% during the testing period. It was also observed an

bighpc.wavecom.pt | Copyright 2021/2022 © BigHPC consortium 28

http://bighpc.wavecom.pt

increase of CPU consumption up to 220% and of disk space up to 1GB. Promscale’s memory

consumption was 25%. Additionally, after 1 hour the delay taken for the metrics to reach the

database started to increase, this suggests that PostgreSQL was not capable of handling all

the metrics being pushed from VMAgent due to resource bottlenecks. Thus, for larger scale

scenarios, the recommended hardware requirements are as follows:

● 16GB of RAM ;

● 8 Core CPU;

● 50GB - 100GB of free disk space.

Build phases.

Monica is built by running the docker-compose command on the yml file.

3.2.3 CI/CD pipeline: Monitoring component

Figure 3.1 presents a diagram of the CI/CD pipeline for the monitoring component.

bighpc.wavecom.pt | Copyright 2021/2022 © BigHPC consortium 29

http://bighpc.wavecom.pt

Figure 3.1 -Monitoring component pipeline diagram.

The build-job stage is where both the unit test and HECTOR images are built and pushed to

the gitlab registry. Regarding the unit-test-job stage, the unit test image is run and in case of

failure, the pipeline stops.

Finally, the functional-test-job validates if the HECTOR container is able to push metrics to the

VMAgent container (simulating the communication between HECTOR and MONICA), in case of

failure the pipeline stops.

Future plans are to add more unit tests to the pipeline, to test HECTOR with singularity, and

add other MONICA services to the pipeline.

bighpc.wavecom.pt | Copyright 2021/2022 © BigHPC consortium 30

http://bighpc.wavecom.pt

3.3. Virtualization component

The BigHPC’s Virtualization and Application Management infrastructure consists of three

interacting components: Repository, Controller, and Executors. Initial prototypes for these

components are described in Deliverable 3.1 [D3.1] and the current prototypes in Deliverable

3.2 [D3.2]. We describe below the requirements for the build and functional tests of these

components.

Generally, because all virtualization components are written in Python and tables are stored in

PostgreSQL, the requirements only consist of specific Python versions and libraries and a

PostgreSQL server. These requirements are satisfied by the container-packaged virtualization

test environment.

3.3.1 Virtualization Repository

The virtual Repository test primarily consists of the database unit-tests for this stage in the

prototype, which are Python unit tests that use the unittest library. All current Repository APIs

are in this test. This will test general connectivity to the database, table schemas and DB

functions (include the Repository API).

Requirements:

● Hardware: 10 CPU cores, memory footprint is less than 1GB of memory

● Infrastructure: Postgres Database

● Software: Python > 3.8

■ Python Libraries: sqlalchemy, psycopg2

Execution example:

[sharrell@bighpc tests]$./big_db_test.py

.....

--

Ran 5 tests in 2.445s

OK

bighpc.wavecom.pt | Copyright 2021/2022 © BigHPC consortium 31

http://bighpc.wavecom.pt

3.3.2 Virtualization Controllers and Executors

This is a regression test that instantiates one Controller service and one Executor. Then it

submits a workload that the Controller sends to the Executor. After, it executes the workload,

in this case a simple test script, helloworld.py. The stdout, stderr and return code are updated

in the database and the test confirms that the correct data is stored. Currently, only serial jobs

are tested since programmatically testing an MPI job without a known MPI stack is not

possible. We plan to mitigate this shortcoming in the final prototype. Additionally, we plan to

support accelerators such as GPUs in the final prototype.

Requirements:

● Hardware: 10 CPU cores, memory footprint is less than 1 gig of memory

● Software: Python > 3.8

○ Python Libraries: BigDB (BigHPC Database Prototype), websockets > 10.2

● Infrastructure: Postgres Database

Execution Example:

[sharrell@bighpc tests]$./exec_sched_test.py

Using test config for database with db name
bighpc_unittest_auto_c42741f3-3743-4bb3-a09c-916a07bb03dd

Starting the scheduler

Connecting to debug server

Executing <Task pending name='Task-1'
coro=<IsolatedAsyncioTestCase._asyncioLoopRunner() running at
/home/sharrell/bighpc-python/lib/python3.9/unittest/async_case.py:102>
wait_for=<Future pending cb=[<TaskWakeupMethWrapper object at
0x7ffaf3c139d0>()] created at
/home/sharrell/bighpc-python/lib/python3.9/asyncio/base_events.py:424>
created at
/home/sharrell/bighpc-python/lib/python3.9/unittest/async_case.py:118>
took 2.043 seconds

Trying to connect to controller: ws://localhost:8500

Successfully connected

Sending hardware info

bighpc.wavecom.pt | Copyright 2021/2022 © BigHPC consortium 32

http://bighpc.wavecom.pt

Got the following message from client: {'metadata': {'op_type':
'HW_INFO'}, 'data': {'cpu': 48, 'ram': 68719476736, 'hostname':
'host1'}}

Updated conn_map = {'host1': {'websocket':
<websockets.legacy.server.WebSocketServerProtocol object at
0x7fe2ecc2a7c0>, 'node_info': {'hostname': 'host1', 'cpu': 48, 'ram':
68719476736, 'timestamp': 1648141723.2185755}}}

Found node(s) for job 1

Scheduling job

Scheduling job with primary node's used cores = 10

Processing message from controller: {"metadata": {"op_type":
"CREATE_JOB"}, "data": {"name": "test_job", "mode": "SERIAL", "uuid":
1, "hosts": ["host1"], "cores": [10, 10], "cmd": "python3
/home/sharrell/virtual-manager/tests/./test_data/test_basic_execution_
regression_workload.py"}}

Executing command: python3
/home/sharrell/virtual-manager/tests/./test_data/test_basic_execution_
regression_workload.py

Got the following message from client: {'metadata': {'op_type':
'JOB_STARTED'}, 'data': {'job_uuid': 1, 'status': 'RUNNING'}}

Got the following message from client: {'metadata': {'op_type':
'JOB_COMPLETE'}, 'data': {'return_code': 0, 'stdout': 'Hello
world!\n', 'stderr': '', 'job_uuid': 1}}

Marking job 1 as completed

Received the following message from the server: {"job_complete_map":
{"1": {"data": {"return_code": 0, "stdout": "Hello world!\n",
"stderr": "", "job_uuid": 1}}}}

.

--

Ran 1 test in 5.511s

OK

bighpc.wavecom.pt | Copyright 2021/2022 © BigHPC consortium 33

http://bighpc.wavecom.pt

3.4. Software-Defined Storage component

BigHPC’s Software-Defined Storage (SDS) solution is composed of three main components,

namely PAIO, PADLL and Cheferd [D4.2].

PADLL implements the SDS data plane component of BigHPC. The data plane is composed of

stages that are installed at different compute nodes in order to mediate I/O operations

between HPC jobs (e.g., BigData applications) and storage resources (e.g., local disks at

compute nodes, Parallel File System). These stages are implemented with the aid of PAIO’s

framework.

Cheferd implements BigHPC’s control plane component. This component is responsible for

receiving QoS storage policies (e.g, I/O prioritization, I/O fairness) from system administrators

and users, and ensuring that these policies are correctly applied at the HPC infrastructure.

Therefore, Cheferd must collect I/O metrics from PADLL’s data plane stages and, with these,

fine-tune the configurations and optimizations (e.g., tune I/O rate-limiting configuration) to be

employed at each data plane stage.

Each of these components is described in further detail on Deliverables D4.1 and D4.2 [D4.1,

D4.2]. Next, we detail the main software and hardware requirements for building and

automatically testing each of the components.

3.4.1 PAIO

PAIO is a framework that enables system designers to build custom-made SDS data plane

stages. A data plane stage built with PAIO targets the workflows of a given user-level layer,

enabling the classification and differentiation of requests and the enforcement of different

storage mechanisms according to user-defined storage policies.

Software requirements. The prototype is written in C++17 and was built and tested with

g++-9.3.0 and cmake-3.16. It depends on the spdlog (v1.8.1) and gflags (v2.2.2) libraries, which

are dynamically installed at compile time by using CMake's FetchContent dependency

management feature. PAIO was successfully tested with Ubuntu Server 18.04 LTS, Ubuntu

Server 20.04 LTS and CentOS 7.5, with kernel 3.10 and 5.8.9, under xfs and ext4 file systems.

bighpc.wavecom.pt | Copyright 2021/2022 © BigHPC consortium 34

http://bighpc.wavecom.pt

Hardware requirements. This component does not have strong dependencies over any

hardware component, including processing (CPU or GPU), memory, storage, or network

devices.

Build phases. PAIO is built under 3 main phases: build, unit tests, and performance tests. The

build phase fetches all dependencies, compiles and installs the software component. The unit

and performance tests phases execute functional and performance experiments to validate

the component.

Unit tests. PAIO provides the following set of functional tests:

● agent_test: functional tests related to the Agent class, including creation and insertion

of rules, statistic collection, and setting stage info variables;

● channel_test: functional tests related to the Channel object, including the creation and

configuration of EnforcementObjects, creation of tickets, enforcement of requests,

and statistic collection;

● channel_statistics_test: functional tests related to the collection of statistics in

ChannelStatistics objects, including constructors creation and structure initialization,

random statistic generation and storage, and collection of general, single, and detailed

statistics;

● differentiation_table_test: functional tests related to the DifferentiationTable class,

including the creation, insertion, and removal of DifferentiationRules;

● housekeeping_table_test: functional tests related to the HousekeepingTable class,

including the creation, insertion, and removal of HousekeepingRules;

● posix_layer_test: functional tests related to the PosixLayer class (InstanceInterface

extension, including the submission of Posix(-like) requests and setting/unsetting of

stage info variables;

● rule_parser_test: functional tests related to the RulesParser class, including the parsing,

creation, insertion, retrieval, and removal of housekeeping, differentiation, and

enforcement rules;

● stage_info_test: functional tests related to the StageInfo class, including the

constructors, setting of environment variables, and serialization;

● status_test: functional tests related to the PStatus class, including the constructors and

error codes;

bighpc.wavecom.pt | Copyright 2021/2022 © BigHPC consortium 35

http://bighpc.wavecom.pt

● southbound_test: functional tests related to the SouthboundConnection class, which

handles all functions to establish the communication between the control plane and

data plane stage;

● token_bucket_test: functional tests related to the TokenBucket class, including

initialization, configuration, and enforcement;

● token_bucket_threaded_test: functional tests related to the TokenBucketThreaded

class, including initialization, configuration, and enforcement.

Performance tests. PAIO also provides the following set of performance tests:

● drl_bench: benchmarks the DynamicRateLimiter enforcement object;

● murmur_bench: benchmarks the hashing scheme used for I/O differentiation;

● noop_bench: benchmarks the Noop enforcement object;

● paio_bench: benchmarks a PAIO data plane stage, determining the maximum

performance of PAIO under different configurations.

3.4.2 PADLL

PADLL is an SDS data plane software component targeted at HPC infrastructures supporting

Big Data applications. The current implementation of PADLL uses the PAIO framework to

dynamically rate limit I/O requests between a given application and the PFS (e.g., Lustre). Also,

it uses LD_PRELOAD to intercept I/O requests made by the applications in a transparent

fashion. This decision promotes the applicability of stages to different applications without

requiring any modification to their original source code.

Software requirements. PADLL is written in C++17 and was built and tested with g++-9.3.0

and cmake-3.16. It depends on spdlog (v1.8.1) and the PAIO libraries, which are dynamically

installed at compile time by using CMake's FetchContent dependency management feature.

Also, to apply PADLL I/O optimizations, one needs to use LD_PRELOAD (change libc calls for

those implemented by PADLL) on job execution.

Hardware requirements. This component does not have strong dependencies over any

hardware component, including processing (CPU or GPU), memory, storage, or network

devices. PADLL can be deployed and executed under one (local) or more (distributed) servers.

bighpc.wavecom.pt | Copyright 2021/2022 © BigHPC consortium 36

http://bighpc.wavecom.pt

Build phases. PADLL is built under 4 main phases: build, unit tests, performance tests, and

deployment. The build phase fetches all dependencies, compiles and installs the software

component. The unit and performance tests phases execute functional and performance

experiments to validate the component. The deployment phase, which is still in development,

deploys PADLL on different servers. In more detail, the data plane stages will be deployed

along (i.e., by using LD_PRELOAD) with the targeted jobs at the corresponding compute

nodes. Stages will run exclusively in user space.

Unit tests. PADLL provides the following set of functional tests:

● namespace_test: functional tests related to the namespace differentiation module,

including the differentiation of I/O requests, selections of channels, and creation of

Context objects;

● load_balancing_test: functional tests related to the channel selection module, including

the load balancing of channels during creation of Context objects;

● ld_dir_test: functional tests to validate the efficiency of enforcing directory-based

system calls with PADLL;

● ld_xattr_test: functional tests to validate the efficiency of enforcing extended attribute

based system calls with PADLL;

● ld_meta_test: functional tests to validate the efficiency of enforcing metadata-based

system calls with PADLL;

● ld_io_test: functional tests to validate the efficiency of enforcing I/O-based system calls

with PADLL.

Performance tests. PADLL will also provide the following set of performance tests, which are

currently under development:

● padll_dp_bench: benchmarks the PADLL data plane stage, determining the maximum

performance of PADLL under different configurations;

● padll_policies_bench: tests different PADLL policies at different levels of granularity

(per-operation, per-user, per-application);

bighpc.wavecom.pt | Copyright 2021/2022 © BigHPC consortium 37

http://bighpc.wavecom.pt

3.4.3 Cheferd

Cheferd is a distributed SDS control plane. It receives Quality of Service (QoS) policies (e.g., I/O

bandwidth, scheduling, fairness) from users and system administrators and enforces these

holistically throughout the PADLL data plane.

Software requirements. Cheferd is written in C++17 and was built and tested with g++-9.3.0

and cmake-3.16. It depends on gRPC (v1.37), spdlog (v1.8.1), Asio (v1.18) and Boost (v1.77)

libraries, which are dynamically installed at compile time, by using CMake's FetchContent

dependency management feature.

Hardware requirements. This component does not have strong dependencies over any

hardware component, including processing (CPU or GPU), memory, storage, or network

devices. Cheferd must be installed on multiple servers. Namely, the local controllers are

supposed to run in the same servers (e.g., compute nodes) as PADLL’s data plane stages, while

the global controller should be deployed on a different set of servers.

Build phases. Cheferd is built under 4 main phases: build, unit tests, performance tests, and

deployment. The build phase fetches all dependencies, compiles and installs the software

component. The unit and performance tests phases execute functional and performance

experiments to validate the component. The deployment phase, which is still in development,

deploys Cheferd instances in different servers. In more detail, the global controllers will be

deployed on independent servers (i.e., outside of compute nodes), either as regular processes

or inside containers. The local controllers will be deployed, as regular user space processes, in

the compute nodes where the corresponding jobs and data plane stages are being executed.

Unit tests. Cheferd provides the following set of functional tests:

● housekeeping_rules_file_parser_test: functional tests to verify the correct configuration

of the initial housekeeping rules file;

● control_rules_file_parser_test: functional tests to verify the correct configuration of the

control rules files (which mimic the system’s administrator configurations);

● controller_flags_test: functional tests to validate the controllers’ (global and local)

ability to correctly process input flags and arguments;

bighpc.wavecom.pt | Copyright 2021/2022 © BigHPC consortium 38

http://bighpc.wavecom.pt

● local_controller_connection_test: functional tests to check if multiple local controllers

are able to correctly connect to the global controller. These tests include the validation

of the controllers’ initialization, of the network links between the local and global

controllers, and of the propagation of the initial housekeeping rules;

● data_plane_connection_test: functional tests to check if multiple data plane stages are

able to correctly connect to a local controller;

● collect_statistics_test: functional tests to validate that the control plane is able to

collect and aggregate statistics from multiple data plane stages;

● control_static_rule_test: functional tests to verify if static control rules (i.e., operation,

data/metadata, job or user related) are correctly sent to different data plane stages;

● control_dynamic_rule_test: functional tests to verify if dynamic control rules are

correctly sent to the data plane stages;

● control_mds_rule_test: functional tests to verify if PFS’s metadata servers related rules

are correctly sent to the data plane stage.

Performance tests. Cheferd will also provide the following set of performance tests, which

are currently under development:

● cheferd_gcontroller_bench: benchmarks Cheferd’s global controller , determining the

maximum performance of it under different configurations;

● cheferd_lcontroller_bench: benchmarks Cheferd’s local controller, determining the

maximum performance of it under different configurations;

● cheferd_calgorithm_bench: benchmarks different control algorithms implemented by

Cheferd in terms of performance and resource usage.

● cheferd_statistics_bench: tests the collection of data plane statistics by Cheferd in

terms of performance and resource usage.

● cheferd_rules_bench: tests the generation of policy rules by Cheferd in terms of

performance and resource usage.

● cheferd_distributed_bench: benchmarks Cheferd under a distributed deployment

combining different numbers of local and global controllers;

Integration tests. Finally, Cheferd will provide the following functional and performance

integration tests, which are currently under development:

bighpc.wavecom.pt | Copyright 2021/2022 © BigHPC consortium 39

http://bighpc.wavecom.pt

● cheferd_padll_functional_test: validates the integration between Cheferd controllers

and PADLL data plane stages. This test includes the validation of the different APIs for

the enforcement of rules and collection of statistics;

● cheferd_padll_bench: benchmarks the integration between Cheferd controllers and

PADLL data plane stages. This test includes the benchmarking of the different APIs for

the enforcement of rules and collection of statistics, under different workloads and

distributed setups;

● cheferd_virtualization_functional_test: validates the integration between Cheferd

global controller and the virtualization manager. This test includes the validation of the

different APIs that enable communication between the two components;

● cheferd_virtualization_bench: benchmarks the integration between Cheferd global

controller and the virtualization manager. This test includes the benchmarking of the

different APIs that enable communication between the two components;

bighpc.wavecom.pt | Copyright 2021/2022 © BigHPC consortium 40

http://bighpc.wavecom.pt

4. Conclusion

This deliverable reports the ongoing work concerned with the pilot deployment. The tasks are

still in progress and here is presented the main plan for the final release.

This activity depends on the other tasks to collect the requirements for the development and

preview testbeds. For Activity 4, the required resources and testbed details are going to be

reviewed during project development, since they depend on the distributed storage policies

to have the required privileges for the HPC workspace.

Activity 3 is collaborating in providing the job submission scripts that will allow access to the

HPC clusters. These scripts need to tackle multiple implementation details, such as: the access

to the resources; the requirements to bypass normal user procedure to answer the

automation of continuous tasks; and translating administrators' management tasks related to

most common HPC use cases into the required monitoring metrics.

Overseeing the other BigHPC platform components comes the monitoring task managed by

Activity 2. To gather the required logs to debug and validate the pilot, tests must be prepared

to collect all data needed by the developer or reviewer. Using the Gitlab platform it is possible

to get all output from jobs along the submitted code, keeping the complete report of the

development. This will allow the developer to save time avoiding the access to the

infrastructure and focus on code development. At the same time, this will bring together the

system administrator to help troubleshoot the issues with complete logs of all tests and, if

applicable, create a docker image with all tools and dependencies required to run and test the

software taking into account the particularities of each environment.

bighpc.wavecom.pt | Copyright 2021/2022 © BigHPC consortium 41

http://bighpc.wavecom.pt

References

[D2.2] Bruno Antunes, Ricardo Leitão, Júlio Silva, “Deliverable 2.2 - Intermediate prototype of

the monitoring framework”, BigHPC deliverable, 31 March 2022.

[D3.1] Richard Todd Evans, Stephen Lien Harrell, Amit Ruhela, “Deliverable 3 .1 - Initial

Prototype of the orchestrator”, BigHPC deliverable, 30 September 2021.

[D3.2] Richard Todd Evans, Amit Ruhela, Stephen Harrell, “Deliverable 3 .2 - Intermediate

prototype of the orchestrator ”, BigHPC deliverable, 30 September 2021.

[D4.1] João Paulo, Ricardo Macedo, Alberto Faria, Vijay Chidambaram, “Deliverable 4 .1 - Initial

SDS prototype”, BigHPC deliverable, 31 March 2022.

[D4.2] João Paulo, Ricardo Macedo, Alberto Faria, Mariana Miranda, Vijay Chidambaram,

“Deliverable 4 .2 - Intermediate SDS prototype”, BigHPC deliverable, 31 March 2022.

bighpc.wavecom.pt | Copyright 2021/2022 © BigHPC consortium 42

http://bighpc.wavecom.pt

