
Tânia Esteves, Ricardo Macedo, Rui Oliveira and João Paulo
INESC TEC & University of Minho

Understanding Storage I/O Patterns
Through System Call Observability

• Diagnosing inefficient I/O patterns done by applications is complex and time-consuming.
• Existing tools suffer from intrusiveness, high performance overhead, lack of analysis pipelines or narrowed scopes.

We introduce DIO, a practical solution that transparently traces applications’ syscalls, parses collected data, and sends it to a pipeline for
customized data analysis and visualization in near real-time.

Motivation

• The tracer uses eBPF to automatically and non-
intrusively capture applications’ syscalls
information with enriched context from the
kernel and forward it to the backend.

• The backend indexes the data and provides a
querying API for accessing it and building
correlation algorithms.

• The visualizer automatically queries the backend
and summarizes the data through customizable
visualizations.

DIO in a Nutshell
Problem: RocksDB clients observe high latency spikes.

Diagnosis: Using DIO to observe the syscalls submitted over time by different
RocksDB threads (Fig. 1), we see that when:
• multiple compaction threads perform I/O simultaneously, db_bench

performance decreases (1&3).
• few compaction threads perform I/O simultaneously, db_bench performance

improves (2&4).
Root cause: Latency spikes occur when threads compete for shared disk bandwidth,
leading to performance contention.

15:05 15:06 15:07 15:08 15:09

80004000
80004000
80004000
80004000
80004000
80004000
80004000
80004000

20000
10000

#e
ve

nt
s

rocksdb
:low0

rocksdb
:low1
rocksdb
:low2
rocksdb
:low3
rocksdb
:low4
rocksdb
:low5

rocksdb
:low6
rocksdb
:high0

db_bench

Time (HH:MM)

1 2 3 4

Fig. 1 - Syscalls issued by RocksDB over time, aggregated by thread name.
db_bench includes the 8 client threads, rocksdb:low[0-6] refers to each compaction thread,

and rocksdb:high0 refers to the flush thread.

Use Case: Finding the root cause of performance anomalies

Use Case: Identifying erroneous actions that lead to data loss

Problem: Data loss when using Fluent Bit’s tail input plugin.

Diagnosis: With DIO, one can observe that:
• app writes 26 bytes to offset 0 of “app.log” file.
• fluent-bit reads the whole content (26 bytes).
• app deletes the “app.log” file, creates a new one with the

same name, and writes 16 bytes to offset 0.
• fluent-bit tries to read from offset 26 instead of offset 0,

losing the 16 bytes written by app.

Root cause: Fluent Bit tracks the last processed offset for
each inode, which is not reset when the file is removed. Fig. 2 – Fluent Bit (v1.4.0)

erroneous access pattern
Fig. 3 – Fluent Bit (v2.0.5)

correct access pattern

z

Automate the detection of key I/O patterns

Build correlation algorithms that:
• find sequences of syscalls repeated multiple times

for a given file.
• find redundant operations, such as opening and

closing a file for every write.

Future Directions

Scan me!

Assist research in other areas like security

Analyze I/O patterns performed by malware to:
• observe and compare how different malware

families interact with the storage.
• find distinctive I/O behavior to assist in building

and improving malware detection tools.

tania.c.araujo@inesctec.ptarXiv.2304.08569

Acknowledgments: This work was financed by the FCT - Portuguese Foundation for Science and Technology, through Ph.D. grant DFA/BD/5881/2020, and realized within the scope of the project POCI-01-0247-FEDER-045924, funded by
the ERDF - European Regional Development Fund, through the Operational Programme for Competitiveness and Internationalization and by National Funds through FCT, I.P. within the scope of the UT Austin Portugal Program.

U
se

r-s
pa

ce
Ke

rn
el
-s
pa

ce

Server1 Server2

Server3

Backend

Visualizer

DIO's components App flow DIO main flow

visualize

Storage Device

Application

write() read()

Tracer
collect

Ring
buffer

3

intercept

send

Sy
sc

al
ls

P

P P

attach

4

1

2
7

6
query

5 store

