
Distributed and Dependable Software-Defined
Storage Control Plane for HPC

Mariana Miranda
HASLab, INESC TEC & University of Minho

mariana.m.miranda@inesctec.pt

Abstract—The Software-Defined Storage (SDS) paradigm has
emerged as a way to ease the orchestration and management
complexities of storage systems. This work aims to mitigate the
storage performance issues that large-scale HPC infrastructures
are currently facing by developing a scalable and dependable
control plane that can be integrated into an SDS design to take
full advantage of the tools this paradigm offers. The proposed
solution will enable system administrators to define storage
policies (e.g., I/O prioritization, rate limiting) and, based on them,
the control plane will orchestrate the storage system to provide
better QoS for data-centric applications.

Index Terms—HPC, SDS, Scalability, Dependability

I. MOTIVATION AND PROBLEM STATEMENT

High-Performance Computing (HPC) has become an essen-
tial tool in many scientific and industrial advancements [1],
as it allows conducting experiments and generating insights
in areas that would otherwise be considered impossible or
too expensive. This is feasible due to the scale of modern
infrastructures, where hundreds to thousands of compute and
storage nodes handle multiple applications concurrently.

The shift towards data-driven scientific discoveries has
made many HPC applications more data-intensive than ever
before [2]. This results in even more concurrent processes
trying to access the HPC’s shared storage resources, causing
I/O interference and performance degradation [3]. In addition,
the complexity of these infrastructures hinders the end-to-end
control of storage I/O flows and the implementation of global
optimizations that could improve its overall performance [4].
These problems become even more aggravating as we move
towards the exascale era, since it will enable these systems to
run more jobs, worsening the I/O bottleneck as a result.

The storage performance bottlenecks that HPC systems are
currently facing go hand-in-hand with the improvements that
software-defined storage (SDS) aims to deliver. This paradigm
proposes a separation between the control layer and data
storage, resulting in a design with two main components:
the control plane and data plane [5]. The control plane is
a logically centralized entity that handles the control logic,
namely coordinates the enforcement of storage objectives (e.g.,
I/O prioritization, bandwidth aggregation policies). The data
plane applies the control logic defined by the control plane
over the I/O flows of applications. This decoupling between
the control layer and the actual data storage is what gives
SDS its advantage over traditional storage systems [6], as it
allows for the control plane to have system-wide visibility over

HPC storage resources, thus facilitating their orchestration and
management.

Although the control plane is a crucial component of the
SDS stack and can be seen as the intelligence of the system,
its design is usually overlooked in most of the research done
on SDS systems. The literature mainly focuses on how storage
objectives should be applied by the data plane or contemplates
an oversimplified version of a control plane [7]–[11].

Moreover, they generally do not explore how the control
plane behaves when handling a large-scale system, or what the
procedure is for when a failure occurs. Nevertheless, the scal-
ability and dependability of the control plane are fundamental
properties to bear in mind for all types of infrastructures that
a control plane may be managing. In our case, HPC systems
have specific requirements that differ from those imposed by
cloud-based systems. For instance, HPC infrastructures are
not only large, but also susceptible to bursty workloads. This
requires the control plane to adapt to oscillations in workload,
in addition to scaling for the substantial size of an HPC
infrastructure. Also, some applications are expected to run for
large periods (i.e., days or weeks) with stable and predictable
performance; thus, failed or slow SDS components should not
compromise their execution.

As a result, our main goal is to design and implement a
control plane that can address the current HPC infrastructures
requirements of scalability and dependability (with a focus on
availability and reliability).

II. OVERVIEW OF THE PROPOSED WORK

With this work, we aim at providing a scalable and depend-
able control plane suitable for current HPC infrastructures.
Additionally, to provide a full-fledged SDS system, the control
plane will be used in conjunction with current state-of-the-art
solutions on the data plane field [12], [13].

To ensure the scalability and dependability requirements of
HPC infrastructures, we intend to explore a distributed control
plane design. Namely, a physically centralized control plane
could be a single point of failure and would not be able to
tackle the scale of HPC infrastructures. Thus, we envision a
design partitioned into multiple distributed controllers, which
requires the exploration of synchronization protocols. More-
over, to tackle the issue of dependability, we will consider
fault-tolerance protocols to ensure that if a controller fails,
such does not affect the system’s availability and performance.



In addition, we will provide control algorithms that enable
the control plane to deliver accurate enforcement strategies
for the desired policies at the storage infrastructure. These
possible algorithms span over a large range of functionalities,
such as I/O prioritization [7], [14], bandwidth guarantees [7],
[15], latency control [14], routing [16], among many others.

III. CURRENT PROTOTYPE

The current prototype1 follows a hierarchical design, where
the controllers have different responsibilities depending on
their control level. As shown in Figure 1, the current prototype
is composed of two types of controllers - global and local.

Control
Plane

Global
Controller

PFS client
compute node 2

App2

...PFS client
compute node 1

App1

PFS client
compute node N

AppN

Data
Plane

Control
Plane

Local Controller 2Local
Controller 1

Local
Controller N

Data Plane
Stage 2A

Data Plane
Stage 2B

Data Plane
Stage 1

Data Plane
Stage N

System
Administrator

storage policies 1. collect statistics
2. enforce policies
3. sleep

Fig. 1. Current control plane design.

The global controller has system-wide visibility and can
holistically orchestrate the storage services. It does so by con-
tinuously collecting monitoring metrics from the system (e.g.,
workflows’ rate), and enforcing new policies to respond to
workload variations or new rules set by system administrators.
However, it only supports a single global controller, which can
result in scalability, reliability, and availability issues.

The local controllers serve as a liaison between the global
controller and the data plane stages (or stages, for short).
A local controller is deployed per compute node and is
responsible for managing locally deployed stages. Therefore,
when the global controller sends a request to collect statistics
or to enforce new storage policies, it is the local controllers’
job to disseminate this request to the stages, and aggregate and
send back the results to the global controller. This way, only
the local controllers deal directly with the stages, offloading
some of the global controller’s work because it does not need
to handle a large number of connections or know the specifics
of the stages.

At the moment, this control plane prototype is already fully
integrated with a state-of-the-art data plane [13]. Each data
plane stage sits between the application and the file system
client, and transparently intercepts I/O requests and enforces
the storage policies indicated by the control plane (e.g., rate
limiting), before submitting the request to the PFS.

Initial testing of the current prototype showed that it can
enforce simple control algorithms (e.g., limit App1 metadata to

1Publicly available at dsrhaslab/cheferd.

X IOPS) and manage up to 1,000 compute nodes. This would
be suitable if we only consider a small-scale HPC center;
however, it would have limitations for larger centers or when
enforcing more complex control algorithms.

IV. NEXT STEPS

Moving forward, we will first focus on the scalability chal-
lenge, namely further assess the limits that our initial prototype
is able to offer. Some initial testing showed some scalability
limitations, namely, on the global controller component; thus,
it is crucial to research how we can expand this current
solution to the scale that HPC requires. In addition, the control
plane allows us to impose a plethora of functionalities and
control policies on the jobs running in the system, hence we
seek to explore new use cases and control algorithms. Lastly,
we will examine several fault-tolerance protocols and existing
solutions, to extend the control plane design to be dependable.

V. RELATED WORK

Nowadays, we can find several studies that apply the
SDS paradigm to a large range of storage infrastructures,
from cloud computing [7]–[9], [14], [16], application-specific
storage stacks [10], [11], [15], [17], [18], or even in HPC
systems [4], [19]. Additionally, the SDS paradigm has been
used to enforce several storage objectives such as compres-
sion [15], encryption [15], I/O prioritization [7], [14], among
many others. Nevertheless, SDS is still in its initial stages, and
there are many open questions that need to be explored.

For instance, the design of the control plane is one of
them, namely its scalability and dependability is usually
overlooked [7]–[11], [14]. As an example, a few solutions
tackle the issue of scalability by configuring their systems to
follow a hierarchical design instead of a flat one [4], [16],
[19]. However, they usually do not explore how the control
plane adapts to volatile workloads, which is crucial because
these workloads can quickly saturate the storage system.

The dependability of the control plane is an even less
explored topic. For instance, previous studies claim that to
deal with the failure of a controller, one could simply impose
a conservative default policy to be enforced until it is available
again [7] or replicate the controller by resorting to a standard
Paxos-like technique [16], although they do not actually im-
plement or evaluate these techniques [7], [15], [16], [19].

ACKNOWLEDGMENTS

This work was financed by the FCT – Fundação para a
Ciência e a Tecnologia (Portuguese Foundation for Science
and Technology) through Ph.D. grant PD/BD/151403/2021,
and realized within the scope of the project BigHPC – POCI-
01-0247-FEDER-045924, funded by the ERDF - European
Regional Development Fund, through the Operational Pro-
gramme for Competitiveness and Internationalization (COM-
PETE 2020 Programme) and by National Funds through FCT,
I.P. within the scope of the UT Austin Portugal Program. This
research is being conducted towards a Ph.D. degree supervised
by João Tiago Paulo (HASLab, INESC TEC & U. Minho) and
José Orlando Pereira (HASLab, INESC TEC & U. Minho).

https://github.com/dsrhaslab/cheferd


REFERENCES

[1] P. S. S. Commitee, The Scientific Case for Computing in Europe 2018-
2026. Addison-Wesley Professional, 2018.

[2] N. Tavakoli, D. Dai, and Y. Chen, “Client-side straggler-aware i/o
scheduler for object-based parallel file systems,” Parallel Computing,
vol. 82, pp. 3–18, 2019.

[3] O. Yildiz, M. Dorier, S. Ibrahim, R. Ross, and G. Antoniu, “On the root
causes of cross-application i/o interference in hpc storage systems,” in
2016 IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS). IEEE, 2016, pp. 750–759.

[4] F. Isaila, J. Carretero, and R. Ross, “Clarisse: A middleware for data-
staging coordination and control on large-scale hpc platforms,” in
16th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGrid). IEEE, 2016, pp. 346–355.

[5] R. Macedo, J. Paulo, J. Pereira, and A. Bessani, “A survey and
classification of software-defined storage systems,” ACM Computing
Surveys (CSUR), vol. 53, no. 3, pp. 1–38, 2020.

[6] A. Darabseh, M. Al-Ayyoub, Y. Jararweh, E. Benkhelifa, M. Vouk, and
A. Rindos, “Sdstorage: a software defined storage experimental frame-
work,” in 2015 IEEE International Conference on Cloud Engineering.
IEEE, 2015, pp. 341–346.

[7] E. Thereska, H. Ballani, G. O’Shea, T. Karagiannis, A. Rowstron,
T. Talpey, R. Black, and T. Zhu, “Ioflow: A software-defined storage
architecture,” in Twenty-Fourth ACM Symposium on Operating Systems
Principles, 2013, pp. 182–196.

[8] M. Murugan, K. Kant, A. Raghavan, and D. H. Du, “flexStore: A
software defined, energy adaptive distributed storage framework,” in
2014 IEEE 22nd International Symposium on Modelling, Analysis &
Simulation of Computer and Telecommunication Systems. IEEE, 2014,
pp. 81–90.

[9] I. Stefanovici, E. Thereska, G. O’Shea, B. Schroeder, H. Ballani,
T. Karagiannis, A. Rowstron, and T. Talpey, “Software-defined caching:
Managing caches in multi-tenant data centers,” in Sixth ACM Symposium
on Cloud Computing, 2015, pp. 174–181.

[10] J. Mace, P. Bodik, R. Fonseca, and M. Musuvathi, “Retro: Targeted
resource management in multi-tenant distributed systems,” in 12th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 15), 2015, pp. 589–603.

[11] R. Gracia-Tinedo, P. Garcı́a-López, M. Sánchez-Artigas, J. Sampé,
Y. Moatti, E. Rom, D. Naor, R. Nou, T. Cortés, W. Oppermann et al.,
“Iostack: Software-defined object storage,” IEEE Internet Computing,
vol. 20, no. 3, pp. 10–18, 2016.

[12] R. Macedo, Y. Tanimura, J. Haga, V. Chidambaram, J. Pereira, and
J. Paulo, “PAIO: General, portable I/O optimizations with minor appli-
cation modifications,” in 20th USENIX Conference on File and Storage
Technologies (FAST 22). USENIX Association, 2022, pp. 413–428.

[13] R. Macedo, M. Miranda, Y. Tanimura, J. Haga, A. Ruhela, S. Har-
rell Lien, R. Todd Evans, J. Pereira, and J. Paulo, “Taming metadata-
intensive HPC jobs through dynamic, application-agnostic QoS control,”
in 23rd IEEE International Symposium on Cluster, Cloud and Internet
Computing (CCGrid). IEEE, 2023.

[14] T. Zhu, A. Tumanov, M. A. Kozuch, M. Harchol-Balter, and G. R.
Ganger, “Prioritymeister: Tail latency qos for shared networked storage,”
in ACM Symposium on Cloud Computing, 2014, pp. 1–14.

[15] R. Gracia-Tinedo, J. Sampé, E. Zamora, M. Sánchez-Artigas, P. Garcı́a-
López, Y. Moatti, and E. Rom, “Crystal: Software-defined storage for
multi-tenant object stores,” in 15th USENIX Conference on File and
Storage Technologies (FAST 17), 2017, pp. 243–256.

[16] I. Stefanovici, B. Schroeder, G. O’Shea, and E. Thereska, “sRoute:
Treating the storage stack like a network,” in 14th USENIX Conference
on File and Storage Technologies (FAST 16), 2016, pp. 197–212.

[17] R. Pontes, D. Burihabwa, F. Maia, J. Paulo, V. Schiavoni, P. Felber,
H. Mercier, and R. Oliveira, “SafeFS: A modular architecture for secure
user-space file systems: One fuse to rule them all,” in 10th ACM
International Systems and Storage Conference, 2017, pp. 1–12.

[18] M. A. Sevilla, N. Watkins, I. Jimenez, P. Alvaro, S. Finkelstein,
J. LeFevre, and C. Maltzahn, “Malacology: A programmable storage
system,” in Twelfth European Conference on Computer Systems, 2017,
pp. 175–190.

[19] S. Karki, B. Nguyen, J. Feener, K. Davis, and X. Zhang, “Enforcing
end-to-end i/o policies for scientific workflows using software-defined
storage resource enclaves,” IEEE Transactions on Multi-Scale Comput-
ing Systems, vol. 4, no. 4, pp. 662–675, 2018.


	Motivation and Problem Statement
	Overview of the proposed work
	Current Prototype
	Next Steps
	Related work
	References

