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Abstract—Modern I/O applications that run on HPC infras-
tructures are increasingly becoming read and metadata intensive.
However, having multiple applications submitting large amounts
of metadata operations can easily saturate the shared parallel
file system’s metadata resources, leading to overall performance
degradation and I/O unfairness. We present PADLL, an appli-
cation and file system agnostic storage middleware that enables
QoS control of data and metadata workflows in HPC storage
systems. It adopts ideas from Software-Defined Storage, building
data plane stages that mediate and rate limit POSIX requests
submitted to the shared file system, and a control plane that
holistically coordinates how all I/O workflows are handled. We
demonstrate its performance and feasibility under multiple QoS
policies using synthetic benchmarks, real-world applications, and
traces collected from a production file system. Results show that
PADLL can enforce complex storage QoS policies over concurrent
metadata-aggressive jobs, ensuring fairness and prioritization.

Index Terms—QoS, Storage management, PFS, Metadata.

I. INTRODUCTION

Modern supercomputers are establishing a new era in
high-performance computing (HPC), providing unprecedented
compute power that enables parallel applications to run at
large-scale [2], [5], [52]. However, contrary to long-lived
assumptions about HPC workloads where applications were
predominately compute-bound and write-dominated, modern
applications (e.g., Deep Learning (DL) training) are data-
intensive, read-dominated, and generate massive bursts of
metadata operations [15], [21], [47]. In fact, recent studies
have noted that many applications spend 15-40% of their
execution time performing storage I/O, and expect this value
to increase for exascale systems [18], [22], [47], [48].

Contrary to compute resources (e.g., CPU, GPU), which
are exclusively reserved to a given job, storage resources –
including both data and metadata – are often shared across
jobs, for example, when accessing the same Parallel File
System (PFS). While modern workloads demand scalable,
high throughput, and low latency storage, having multiple
concurrent jobs competing for shared storage resources can
lead to severe I/O contention and overall performance degra-
dation [38], [48], [50]. Thus, not ensuring storage quality of
service (QoS) guarantees in large-scale HPC systems means
that jobs will unfairly access shared resources and execute
without sustained I/O performance [50].
Challenges. Efficiently controlling I/O workflows of large-
scale HPC storage systems poses unique challenges, of which
existing approaches have been unable to address.

Manual intervention. In several HPC facilities, system admin-
istrators stop jobs with aggressive I/O behavior (e.g., accessing
large datasets made of small-sized files, overloading the shared
storage with unnecessary data or metadata requests) and
temporarily suspend job submission access for users that do
not comply with the cluster’s guidelines [30], [38]. However,
this reactive approach is triggered when the job has already
slowed the storage system and impacted the QoS of other jobs.
Intrusiveness to I/O layers. While solutions like GIFT [48],
CALCioM [22], and TBF [50] aim at mitigating I/O contention
and variability, these are tightly coupled to the implemen-
tation of core layers of the HPC I/O stack, including the
shared file system, job scheduler, and I/O libraries. Such an
approach requires profound code refactoring, increasing the
work needed to maintain and port it to new platforms. For
instance, optimizations made at Lustre may not be directly
applicable over other file systems (e.g., BeeGFS, PVFS), as
even though they share a similar high-level design, the internal
I/O logic differs across implementations.
Partial visibility and I/O control. Few solutions enable QoS
control from the application-side (i.e., at the compute node
level), thus not requiring changes to core layers of the I/O
stack [29]. However, these act in isolation (i.e., agnostic of
other jobs in execution), being unable to holistically coordinate
the I/O generated from multiple jobs that compete for shared
storage, ultimately leading to I/O contention and waste of
system resources (e.g., unused I/O bandwidth) [43], [55].
Metadata remains overlooked. While existing proposals focus
on achieving QoS over data workflows (I/O bandwidth) [14],
[22], [25], [31], [48], [50], [60], [61], the metadata counterpart
has not received the same level of attention. In fact, several
HPC centers are observing a surge of metadata operations in
their clusters and expect this to become more severe over time.
This is problematic given that even the I/O operations of a
single job can saturate the PFS metadata resources, leading to
unresponsiveness of the file system and increased execution
time for all running jobs [30], [38].

This work. To address these challenges, we present PADLL,
an application and file system agnostic storage middleware
that enables QoS control of data and metadata workflows
in HPC storage systems. Fundamentally, it allows system
administrators to proactively and holistically control the rate
at which POSIX requests are submitted to the PFS.

PADLL adopts ideas from Software-Defined Storage [42],



following a decoupled design that separates the I/O logic
into a data plane and a control plane. The data plane is a
multi-stage component that actuates at the compute node level,
where each stage mediates the I/O requests between a given
application and the shared file system. Specifically, stages
transparently handle applications’ requests by intercepting
POSIX calls (e.g., open, close, read, getattr) and dy-
namically rate limiting those that are destined towards the PFS.
This makes PADLL applicable over multiple applications and
cross-compatible with POSIX-compliant file systems, without
requiring changes to any core layer of the HPC I/O stack.

Stages are then controlled by a logically centralized man-
ager, the control plane, that defines how all I/O workflows
should be handled. It acts as a global coordinator with system-
wide visibility that continuously monitors and adjusts the I/O
rate of data plane stages. It does so by dynamically allocating
storage resources (i.e., metadata rate, I/O bandwidth) among
jobs upon workload and system variations, ensuring that QoS
policies are met at all times. Further, to orchestrate a large
number of data plane stages concurrently, the control plane is
hierarchically distributed, made of global and local controllers.

To ensure custom and fine-grained control over I/O work-
flows, PADLL enables system administrators to specify QoS
policies through control algorithms, which can be as simple as
statically rate limiting a specific type of request (e.g., open) of
a given job, to more complex ones, as achieving proportional
sharing of metadata resources across all active jobs [11], [26].

Implementation and evaluation. To validate the performance
and feasibility of our approach, we implemented a PADLL
prototype, including multiple control algorithms to enforce
different storage QoS policies, namely uniform and priority-
based rate distributions, proportional sharing, and a new max-
min fair share algorithm suited for volatile workloads.

Experiments were conducted using both synthetic bench-
marks and real-world applications (IOR [54] and Tensor-
Flow [9], respectively), as well as traces of metadata oper-
ations collected from a production Lustre file system of the
ABCI supercomputer. Results demonstrate that: (1) PADLL
effectively controls the rate of I/O workflows at differ-
ent granularities, including request type (e.g., open, read,
getattr), request class (e.g., metadata, data), and job; (2)
it enables enforcing storage QoS policies over distributed,
metadata-aggressive jobs holistically; (3) when configured
with our new control algorithm, under volatile workloads,
PADLL maximizes the use of metadata resources, accelerating
the performance of resource-hungry jobs without degrading
over-provisioned ones; and (4) a single stage is able to service
requests at high throughput rates (up to 3.20 Mops/s), and the
control plane can manage the overall system at µs-scale.

In summary, the paper makes the following contributions:
• A study that analyzes traces from a production Lustre file

system at ABCI, highlighting the importance of ensuring
QoS over metadata resources (§II).

• PADLL, an application and PFS agnostic storage middle-
ware that enables QoS control in HPC storage systems

(§III). The system is publicly available at dsrhaslab/padll,
dsrhaslab/cheferd, and Zenodo [41] repositories.

• A new max-min fair share algorithm that enables differ-
entiated QoS across multiple jobs, while preventing resource
over-provisioning under volatile workloads (§IV).

• Experimental results demonstrating PADLL’s performance
and applicability under different scenarios using both syn-
thetic and realistic I/O workloads (§V).

II. BACKGROUND AND MOTIVATION

Parallel file systems are the storage backbone of HPC in-
frastructures, being used to store and retrieve, on a daily basis,
petabytes of data from hundreds to thousands of concurrent
jobs. In this paper, we focus on Lustre-like file systems (e.g.,
Lustre [53], BeeGFS [16], PVFS [13]), which are present
in most TOP500 supercomputers. A typical Lustre-like file
system consists of several building blocks. Metadata Servers
(MDSs) maintain the file system namespace (e.g., file names
and layouts, permissions, extended attributes) and handle all
metadata operations. The namespace is persisted in a single
or multiple Metadata Targets (MDTs) nodes. Data operations
are serviced by Object Storage Servers (OSSs) which are
connected to compute nodes via high-speed interconnects,
and store files on Object Storage Targets (OSTs). Files are
typically distributed across multiple OSTs for parallelism and
availability. File system clients reside at compute nodes (in
kernel-level) and access the file system using standard POSIX
system calls (e.g., open, read, close, getattr).

Depending on the scale of the file system, metadata nodes
assume different configurations [7]. In some deployments, the
namespace is persisted across multiple MDTs and a single
MDS handles all metadata operations, having additional MDS
nodes as standby replicas; in others, different MDSs/MDTs
manage/persist different parts of the namespace.
Metadata workflow and limitations. Regardless of the appli-
cation, workload, or job, whenever a file needs to be accessed
(e.g., create/open/remove file, access control, extended at-
tributes) the main I/O path always flows through the metadata
service. When creating files, the file system client issues a
RPC routine to the MDS, which will create a new entry
in the namespace and assign OSTs in a capacity-balanced
manner to persist the data; for existing files, the MDS retrieves
information about the file stripe and OST mappings.

When used at scale, this centralized design comprises sev-
eral limitations that can severely bottleneck the file system
and impact the performance of all running jobs. First, different
metadata operations carry different costs to the PFS. Depend-
ing on the file system implementation, read-only operations
such as getattr only require acquiring read-locks, while
operations like open, close, and unlink require more
expensive locking, as they need to update the namespace
state [8], [12]. Other operations, such as mkdir or rename,
require even stronger guarantees (i.e., atomicity). Second,
modern workloads, such as DL training, comprise large-scale
datasets that can reach TiB in size and are made of multiple
small-sized files, which generate high and continuous bursts

https://github.com/dsrhaslab/padll
https://github.com/dsrhaslab/cheferd
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Fig. 1: Metadata throughput in PFS1 over a 30-day period.

of metadata operations [20], [34]. Third, the number of file
system clients is several times higher than available MDSs,
which can become saturated when several concurrent jobs have
aggressive I/O metadata behavior [38].

A. Analyzing Metadata Operations in Production Clusters

To understand the impact of metadata operations in pro-
duction, we analyze the logs of a Lustre file system from the
ABCI supercomputer. The file system is a DDN ExaScaler
Lustre composed of 2 MDSs in a hot-standby configuration,
backed by 6 MDTs, and 36 OSTs that provide 9.5 PiB of
storage capacity. We refer to this file system as PFS1.

We monitored the I/O activity of the most frequent metadata
operations at MDSs/MDTs, using DDNStorage’s LustrePerf-
Mon [4]. We collected per-MDT performance statistics for
open, close, getattr, setattr, rename, mkdir, mk-
nod, rmdir, statfs, sync, and unlink operations. The
logs report per-operation performance statistics captured with
1-minute samples over a 30-day observation period. Further,
we also monitored the I/O bandwidth (read and write)
observed by OSSs over the same collection period.
Overall metadata load. We first examine the throughput of
metadata operations throughout the overall observation period.
Fig. 1 depicts the rate of all collected metadata operations at
PFS1. Metadata operations are submitted at a massive rate, av-
eraging 200 kops/s. Over different periods, PFS1 continuously
serves requests over 400 kops/s, which last several hours to
days, and experiences bursts that peak at 1 Mops/s. Indeed, the
workload is extremely volatile, frequently exhibiting periods
of low throughput (50 kops/s or lower) to immediately spike
up to 450 kops/s (or higher).

Furthermore, we observe that this load is much higher than
those reported in other clusters [47]. For example, a study
from NERSC reports that the PFS shared by Edison and Cori
supercomputers had an average rate of 9.7 kops/s and 7 kops/s
for open and close operations, respectively; while PFS1
experiences 29 kops/s and 43.5 kops/s. While the metadata
load depends on different factors (e.g., cluster size, workload,
file organization), we suspect that these values mainly stem
from the type of jobs conducted at ABCI, which are mostly
AI-oriented (e.g., DL training).

Observation: Modern I/O workloads generate massive amounts
of metadata operations. Based on previous studies [47] and
the results observed from PFS1, it is expected that these values
will continue to increase over time. This means that exclusively
ensuring QoS over data workflows (i.e., read and write) is
no longer enough to achieve fair access to PFS resources, and
thus, metadata operations need to be managed as well.
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Fig. 2: Ratio of metadata operations to I/O bandwidth in PFS1.

Ratio of metadata operations to I/O bandwidth. We now
analyze the correlation between data and metadata opera-
tions at PFS1. As most jobs conducted at ABCI are AI-
oriented, PFS1 experiences low write throughput (average rate
of 0.6 GiB/s), while reads are served at an average rate of
48 GiB/s, as depicted in Fig. 2 (top). However, comparing
the amount of metadata operations and the I/O bandwidth
serviced by PFS1, as depicted in Fig. 2 (bottom), we observe
that, in several periods, metadata operations have significantly
higher throughput than GiB/s read/written from/to the PFS.
For instance, between days 13 and 20, metadata operations
were submitted at a rate over 120 kops for each GiB (or 120
ops/MiB) read/written from/to the PFS. This means that even
if hard QoS limits are imposed over data operations, metadata
workflows may still remain unchanged.

Observation: We observed several periods where the amount
of submitted metadata operations far exceeds the GiBs of data
read/written from/to PFS1. This means that there is not a strict
dependency between both operation classes, consolidating the
need for ensuring QoS over metadata workflows as well.

0
50
100
150
200
250

0 5 10 15 20 25 30

close
getattr

open
rename

C
um

ul
at

iv
e

O
ps

 (x
10

9 )

Time (days)

0
0.5
1

1.5
2

2.5

0 5 10 15 20 25 30

mkdir
mknod
rmdir

setattr
statfs
sync

unlink

Fig. 3: Cumulative metadata operations in PFS1.

Type and frequency of metadata operations. Fig. 3 shows
the type and amount of metadata operations in PFS1. open,
close, getattr, and rename are the most frequent op-
erations, accounting for 98% of the total load. Notoriously,
several of these are particularly costly to the PFS and prone
to cause I/O contention, due to expensive locking (i.e., open
and close) and atomicity guarantees (i.e., rename). As for
getattr operations, while less costly, PFS1 received almost
250 billion requests throughout the overall observation period
(corresponding to ≈47% of the total load), representing an
average and continuous rate of 95.8 kops/s.

Observation: The most predominant metadata operations, na-
mely open, close, rename, and getattr, account for 98%
of PFS1’s metadata load. Given that not all operations entail the
same cost and I/O pressure over the shared metadata resources,
operations should be controlled with fine-granularity.
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III. PADLL STORAGE MIDDLEWARE

PADLL is a storage middleware that enables system ad-
ministrators to proactively and holistically control the rate of
data and metadata workflows to achieve QoS in HPC storage
systems. Its design is built under the following core principles.
Application and PFS agnostic. PADLL does not require
code changes to any core layer of the HPC I/O stack, being
agnostic of the applications it is controlling as well the file
system to which requests are submitted to. This makes PADLL
applicable over multiple applications and compatible with
POSIX-compliant storage systems, including both local (e.g.,
xfs, ext4) and distributed file systems (e.g., Lustre, BeeGFS).
Fine-grained I/O control. PADLL classifies, differentiates,
and controls requests at different levels of granularity, in-
cluding operation type (e.g., open, read), operation class
(e.g., data, metadata), user, and job, which allows applying
different types of policies (e.g., only rate limit open calls, rate
limit all metadata operations, rate limit job xyz to X ops/s).
Global visibility. PADLL ensures holistic control of all I/O
workflows and coordinated access to the PFS, preventing I/O
contention and unfair usage of shared storage resources.
Custom QoS specification. PADLL enables system adminis-
trators to create custom QoS policies for rate limiting jobs run-
ning at the cluster (e.g., uniform [29] and priority-based rate
distribution [50], proportional sharing [43], [59], DRF [26]),
protecting the PFS from greedy jobs and I/O burstiness.

Fig. 4 outlines PADLL’s high-level architecture. It follows a
decoupled design that separates the I/O logic into two planes
of functionality. The data plane (§III-A) is a multi-stage
component that provides the building blocks for differentiating
and rate limiting I/O workflows. The control plane (§III-B)
is a global coordinator that manages all data plane stages
to ensure that storage QoS policies are met over time and
adjusted according to workload variations.

A. Data Plane

PADLL’s data plane stages (or stages for short) actuate at the
compute node level, each sitting between the application and
the PFS. PADLL transparently intercepts (using LD_PRELOAD)
and reimplements multiple POSIX system calls from different
operation classes before being submitted to the PFS, including
data (e.g., read, pwrite), metadata (e.g., open, rename),
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extended attributes (e.g., getattr, setattr), and directory
management (e.g., mkdir, mknod).

To control the rate of I/O workflows of a given job, multiple
PADLL stages may be used. Under single node jobs, a single
data plane stage controls all I/O workflows. As depicted in
Fig. 4, this is the case of job2 where App2 only executes
at compute node 3. For distributed jobs, where application
instances run on separate compute nodes, multiple data plane
stages need to be set (i.e., one per instance). For example,
as depicted for job1 in Fig. 4, two stages are required to
effectively rate limit all I/O workflows of App1, since it exe-
cutes in compute nodes 1 and 2. Furthermore, each compute
node can also have multiple stages, created from multi-process
applications (i.e., one stage per process).

To handle the I/O workflows of a given application, stages
are organized in three main components, as depicted in Fig. 5.

Mountpoint differentiation. Internally, compute nodes hold
multiple file systems, including local, which are used for
managing local storage devices (e.g., xfs, tmpfs), and remote,
for accessing files in distributed storage systems like Lustre
and BeeGFS. Given that PADLL intercepts POSIX requests
regardless of the targeted file system, it needs to identify which
requests are destined towards the PFS, so these can be treated
accordingly. This is achieved in three phases.

Registering mountpoints: first, the system administrator de-
fines which mountpoints should be managed with PADLL, by
registering their full path on a mountpoint registry (À). For
example, as depicted in Fig. 5, the stage only handles the
requests that are destined towards /scratch.

Handling path-based operations: all system calls that define
the pathname of the targeted file, such as open, fopen,
rename, and mkdir, are then intercepted (Ê) and analyzed
(Ë). Requests that are destined towards the registered mount-
points proceed to the subsequent components (Í); otherwise,
these are directly submitted to the corresponding file system
without additional processing (Ð).

Handling file descriptor (FD) based operations: to determine
if a system call that accesses files through FDs (e.g., read,
fgetattr) is destined towards a registered mountpoint, for
each open-based call, PADLL stores the resulting FD in a



file mapping module (Ì). Whenever any of these system calls
is intercepted (Ê), PADLL verifies if the corresponding FD
is valid (Ì), proceeding to the subsequent components (Í);
otherwise, it is submitted to the corresponding file system
without changes (Ð). On close, the FD is removed from
the file mapping. File pointer based operations (e.g., fread)
are handled in a similar manner.
Request differentiation and rate limiting. Internally, as
depicted in Fig. 5, stages are organized in multiple queues (en-
titled as channels), each with a token-bucket that determines
the rate of its requests (DRL). A token-bucket is a commonly
used mechanism for controlling the rate and burstiness of
I/O workflows [11]. Each of these channels only serves a
specific set of requests. For example, channelD and channelM
handle all data and metadata operations destined towards
/scratch, respectively. The type of requests each channel
handles (Á), as well as the rate of each token-bucket are set
by the control plane (Â).

After validating their associated mountpoint, requests are
differentiated based on a specific set of attributes that charac-
terize them, including the operation type (e.g., open, get-
attr), operation class (e.g., metadata, data), operation
size, userID, and jobID (Í). For each request, the stage hashes
its attributes into a fixed-size token through a computationally
cheap hashing scheme [10], which maps the request to the
corresponding channel that will enforce it (Î). If no match
is found, it means that the request should not be handled
by PADLL, being submitted to the file system without addi-
tional processing (Ð). Once in the channel, requests are then
processed (i.e., dequeued) and rate limited according to the
token-bucket’s rate (Ï). After this process, requests are then
submitted to the targeted POSIX file system (Ð).

B. Hierarchical Control Plane

The control plane is a logically centralized component with
system-wide visibility that defines how all I/O workflows
in the HPC cluster are handled. It does so by continuously
communicating with data plane stages to collect I/O metrics
(e.g., operation rate, I/O bandwidth) and enforce stage-specific
rules that dynamically adjust the workflow’s rate (i.e., at token-
buckets) to respond to workload and system variations, as well
as new policies set by system administrators.

As depicted in Fig. 4, PADLL’s control plane follows a
hierarchical distribution. Local controllers have local visibility
and manage all data plane stages of a given compute node. A
global controller has global visibility and enforces cluster-
wide QoS policies by orchestrating all local controllers. Since
multiple stages can execute in the same compute node, creating
a hierarchy of controllers allows minimizing the number of
connections and exchanged messages to the global controller.
Control logic. In PADLL, the control logic is specified through
storage QoS policies. These can be as simple as individually
set the rate for the open calls of a given job, to more
complex ones such as dynamically reserve shares of metadata
operations for all jobs in the cluster. The latter are defined

through control algorithms, which are implemented in a feed-
back control loop, where the control plane repeatedly performs
four main steps, namely collect, compute, enforce, and sleep.
Collect: local controllers continuously collect statistics (e.g.,
per-stage metadata rate) from their assigned data plane stages
(i.e., which are co-located in the same compute node). These
metrics are aggregated and reported to the global controller.
For multi-node jobs, the global controller aggregates the
statistics reported from all local controllers where the job is
being executed. For instance, in Fig. 4, to observe the metrics
of job1, the global controller aggregates statistics from local
controllers of compute nodes 1 and 2.
Compute: the global controller then verifies if all policies
are being met, by correlating the QoS limits defined by the
system administrator (e.g., maximum metadata rate defined
for job1) and the rates reported from stages (e.g., actual rate
experienced by job1). If the imposed limits are not being met,
due to workload or system variations, it generates new rates
(i.e., rules) to the uncompliant stages.
Enforce: all generated rules are then submitted to local con-
trollers, which in turn will be submitted to the corresponding
stages, where token-buckets will be adjusted with a new rate.
Sleep: as a complementary step, sleep defines the periodicity
of control cycles (e.g., perform the aforementioned control
steps at 1-second intervals). With small intervals stages will be
adjusted more frequently and impose higher control overhead
(i.e., continuously collect statistics and enforce rules), while
with larger intervals jobs may become unsupervised for long
periods, which can be harmful under volatile workloads.
Orchestrating stages of distributed jobs. Every time a single
or multi-node job starts, its stages are initialized and connected
to the corresponding local controllers. Each stage sends to the
controller information that characterizes the job and the node
it is running, such as the jobID, PID, hostname, and userID.
Local controllers synchronize this information with the global
controller. Based on this, the control plane knows which job
each stage respects to, orchestrating the stages that belong to
the same job-ID as a single one.

C. Implementation

We have implemented PADLL’s data and control planes with
16K and 6K lines of C++ code, respectively.
Transparently intercepting POSIX calls. The data plane
uses LD_PRELOAD to transparently intercept POSIX calls and
handle them before being submitted to the PFS. It supports 42
system calls from different operation classes, including data,
metadata, extended attributes, and directory management.
Rate limiting. The logic for rate limiting requests (e.g.,
queues, token-buckets) was built using PAIO [43], a framework
for building custom-made, user-level storage data planes.
Communication. Communication between controllers is es-
tablished through RPC calls, using the gRPC framework [6],
while communication between local controllers and data plane
stages is established using UNIX Domain Sockets. For the
latter, we adopt the control interface proposed in PAIO.



Control delegation. Currently, local controllers act as proxies
that aggregate statistics from stages before being dispatched
to the global controller, and forward enforcement rules to the
respective stages. We defer the delegation of control logic (i.e.,
control partitioning) to local controllers to future work.

IV. CONTROL ALGORITHMS

We now present state-of-the-art control algorithms sup-
ported by PADLL, and introduce a new QoS algorithm for
preventing resource over-provisioning. In PADLL, control al-
gorithms can be either static (§IV-A) or dynamic (§IV-B).
For all, we consider the amount of operations serviced by
the PFS, either data (bandwidth) or metadata (IOPS), as the
shared resource to be distributed among jobs. Further, we
define MaxR as the maximum throughput of either data or
metadata that a given PFS can service.

A. Static Control Algorithms

Static control algorithms enable defining, for each job, fixed
I/O limits for accessing shared storage resources.
Uniform. In a uniform rate distribution jobs are throttled with
a fixed limit throughout their execution, regardless of their size
(i.e., number of compute nodes), duration, and workload (e.g.,
access pattern, I/O load, dataset size). Such an approach is
useful to equally distribute resource shares among jobs.
Priority. In a priority-based rate distribution, PFS resources
are distributed based on a given priority, where jobs with
higher priority have access to a larger resource share.

These algorithms follow a similar approach to those of
cgroups blkio [3] and OOOPS [29]. Analogously, as I/O limits
are fixed throughout the jobs’ execution, these do not leverage
from PADLL’s global visibility, which can result in a misuse
of system resources. Specifically, jobs cannot be dynamically
adjusted when (1) there are leftover resources (e.g., a job ended
its execution and released its resource share), leading to under-
provisioning; or (2) jobs are assigned with shares larger than
they need (e.g., job submits operations at a rate lower than the
defined limit), experiencing over-provisioning.

B. Dynamic Control Algorithms

Dynamic control algorithms enable assigning, to each job,
resource shares that change over time (based on soft and hard
I/O limits), being adaptable to workload or system variations
(e.g., jobs entering or leaving the system, volatile workloads).
These algorithms are implemented in a feedback control loop
and are executed in the global controller.
Proportional sharing. To ensure I/O fairness while preventing
under-provisioning scenarios, we implemented a max-min fair
share control algorithm that enforces per-job rate reservations,
similar to those in [43], [50], [59]. At any given time, jobs are
allocated with I/O resources in order of increasing demands
(i.e., defined QoS limit), where (1) no job gets a share larger
than its demand and (2) jobs with unsatisfied demands get
equal shares of resources. Then, whenever there are leftover
resources – for example, the current metadata rate used by all

Algorithm 1 Prop. Sharing without False Resource Allocation
Initialize: MaxR = N; Active > 0; demandi > 0; usagei > 0; 0 ≤ ε ≤ 1

1: {usage0, ... , usageActive−1} ← collect ()
2: leftR ←MaxR
3: for i = 0 in [0, Active−1] do
4: fair share ← leftR

Active−i
5: if usagei ≤ demandi then
6: thresholdi ← (demandi − usagei) ∗ ε
7: ratei ← min (usagei + thresholdi, fair share)
8: else
9: ratei ← min (demandi, fair share)

10: leftR ← leftR − ratei
11: total usage ←

∑Active−1
j=0 usagej

12: for i = 0 in [0, Active−1] do
13: usage proportioni ← usagei

total usage

14: ratei ← ratei + (usage proportioni ∗ leftR)
15: enforce ({rate0, ... , rateActive−1})
16: sleep (loop interval)

jobs has not reached MaxR – the algorithm distributes them
across active jobs in a proportional manner.

While this algorithm is well-suited for workloads with
sustained I/O load, it is suboptimal under volatile workloads.
Specifically, the algorithm always allocates a share of the I/O
resources to jobs, regardless of their I/O load; if a given job
follows a volatile workload, the algorithm may assign a share
larger than it needs, resulting in over-provisioning. We refer
to this behavior as false resource allocation.

Proportional sharing without false allocation. We propose a
new proportional sharing algorithm that prevents false resource
allocation to ensure storage QoS under volatile workloads
(Alg. 1), entitled as PSFA. Briefly, rather than assigning
resource shares exclusively based on the number of active jobs
in the system and their demands, we consider the actual usage
(i.e., I/O load) of each job and redistribute resources in a max-
min fair share manner based on those observations.

In more detail, the algorithm performs the following steps.
First, it collects statistics from each active job’s stage to
determine its actual rate, given by usagei (1). For each active
job, the algorithm computes its fair share (4) and verifies
if the current rate (usagei) is lower than its demand (5).
Under this scenario, jobi can be serviced at a rate lower
than its demand. As such, it assigns the minimum between
fair share and usagei + thresholdi (7). Thresholdi is com-
puted based on the product of a configurable ε value and
the difference between demandi and usagei, and is used to
absorb the rate of highly volatile workloads (6). If usagei
is higher than demandi, the controller assigns the minimum
between demandi and the fair share (8-9). The algorithm then
distributes leftover rate (leftR) across actives jobs (11-14).
Specifically, it computes the overall rate used by all jobs
(11), and assigns leftR based on their usage proportion, given
by usage proportioni (13-14). Finally, the global controller
generates rules (enforce) to be submitted to each local
controller (15), and sleeps for loop interval before beginning
a new control cycle (16).
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Fig. 6: Per-operation type and class rate limiting. Experiments show that PADLL can enforce different rate limits over different POSIX
operations and granularities, including open, getattr, read, write, metadata, and data. Metadata operations are presented in
IOPS (kops/s), while data operations in I/O bandwidth (namely, GiB/s for read/write and MiB/s for data experiments).

V. EVALUATION

Our evaluation seeks to answer the following questions:
• Can PADLL control I/O workflows at different granularities?
• Can PADLL enforce QoS policies over concurrent jobs?
• What is the performance of PADLL control and data planes?

Experimental testbed. Experiments were conducted on three
hardware configurations. Configuration A respects to compute
nodes of the ABCI supercomputer [1], equipped with two
20-core Intel Xeon processors, 384 GiB of RAM, and an
InfiniBand EDR network card, running CentOS 7.5. The PFS
is a dedicated DDN ExaScaler Lustre composed of 2 MDSs in
a hot-standby configuration, backed by 2 MDTs, and 24 OSTs
that provide 359 TiB of storage capacity. Configuration B
respects to compute nodes of the Frontera supercomputer [56],
equipped with two 16-core Intel Xeon processors, 128 GiB
of RAM, four NVIDIA Quadro RTX 5000 GPUs, and a
Mellanox InfiniBand FDR network card, running CentOS 7.9.
The production PFS is a Lustre file system composed of 4
MDSs, each with a single MDT, and 32 OST nodes with 22
PiB of storage capacity. Configuration C respects to compute
nodes of the Frontera supercomputer, equipped with two 28-
core Intel Xeon processors, 192 GiB of RAM, and a Mellanox
InfiniBand HDR-100 network card, running CentOS 7.9. The
production PFS is the same as hardware configuration B.

Benchmarks and workloads. We conducted experiments
using both data and metadata workloads. For data workloads
we used IOR [54], which performs a read/write workload
that sequentially reads/writes from/to a single file with 875
GiB using POSIX-compliant system calls. We also used Ten-
sorFlow [9], an AI framework used for DL training that is
predominately executed in today’s HPC clusters [47], [62].

To generate realistic metadata workloads, we implemented
a trace replayer that submits metadata operations with an
identical request distribution as the one observed from the logs
collected at PFS1 (§II-A). The replayer is multi-threaded, and
each thread submits operations at a rate that follows the same
performance curve as original logs. The rate of each operation
was scaled-down to half, due to the difference in size between
PFS1 and configuration A’s PFS. The execution period was

also accelerated, and each second of the replayer corresponds
to a minute’s worth of operations in the original trace.

Methodology. For all experiments, the global controller runs
at a dedicated compute node, while local controllers execute
co-located with each job instance and respective data plane
stages. Metadata experiments were conducted with hardware
configuration A (§V-A–§V-C), and data experiments with
configurations B (§V-A, §V-B) and C (§V-D). All experiments
were conducted using the shared PFS. Across all testing
scenarios, two setups were used: baseline, which represents
the benchmark without using PADLL, and padll, where POSIX
operations submitted by the benchmark are intercepted by
PADLL and throttled at a given rate.

A. Per-operation type rate limiting

We first demonstrate how PADLL enables system adminis-
trators to control the rate of specific operations. Fig. 6 depicts
the results of all setups under different operation types.

Workload configuration. Both trace replayer and IOR were
configured to submit a single operation type – namely, open
and getattr (left), and read and write (right).

PADLL configuration. For all experiments, PADLL was
configured to throttle operations with a static rate, whose
value changes every N minutes (6 minutes for metadata and
1 minute for data operations) upon instruction of the system
administrator (i.e., rule defined on the control plane).

Results. At all times, padll is able to control the rate of all
operations, never exceeding the configured limits. Over several
periods, padll follows the same performance curve as baseline,
as observed in open between 23 and 29 minutes (i.e., periods
where the black line is not flat). This is because, the limit set
by the system administrator (for that interval) is higher than
the operations submitted by the replayer. Analogously, we also
observe periods where padll achieves higher throughput than
baseline, as observed in getattr between 8 and 12 minutes.
This happens when operations are being aggressively rate
limited (i.e., the original rate is significantly higher than the
defined limit), creating a backlog of operations to be executed
later when there are enough available resources.



Table I: Per-Job QoS control testing scenarios.

Test. scenario #1 Test. scenario #2 Test. scenario #3

Job1 25% – 15 kops/s 15% – 15 kops/s 15% – 40 kops/s
Job2 25% – 25 kops/s 20% – 25 kops/s 20% – 25 kops/s
Job3 25% – 30 kops/s 20% – 30 kops/s 20% – 30 kops/s
Job4 25% – 40 kops/s 45% – 40 kops/s 45% – 15 kops/s

We observe similar results for data-oriented operations,
namely read and write. However, contrarily to configu-
ration A where requests are submitted to a dedicated PFS, we
observe more variability, as experiments were conducted over
a file system shared with multiple concurrent jobs.

B. Per-operation class rate limiting

We now demonstrate how PADLL controls the workflows of
a given operation class, namely metadata and data.
Workload configuration. We followed a similar methodology
as in §V-A. For metadata, operations are submitted from
a multi-node job made of 4 trace replayer instances, each
running on a dedicated compute node. Each instance spawns
8 threads that submit different types of metadata operations
(same as those discussed in §II-A). To demonstrate PADLL’s
general applicability, we conducted the data experiments
using a distributed TensorFlow job over 4 compute nodes,
running version 2.3.2 with the LeNet training model [35] and
configured with a batch size of 128 TFRecords. We used the
ImageNet dataset (≈150 GiB) [51], hosted at the shared PFS.
PADLL configuration. Similar to §V-A, PADLL was config-
ured to throttle operations with a static rate, whose value
changes every 6 minutes for metadata workloads and 5 minutes
for data workloads. Fig. 6 (bottom) depicts the obtained results.
The throughput corresponds to the accumulated rate of all
replayer instances (in IOPS) or TensorFlow workers (in I/O
bandwidth).
Results. In both data and metadata experiments, padll
effectively controls the rate of all workflows throughout the
overall observation. In several periods, padll matches or
achieves higher throughput performance than baseline; we
draw similar observations as in §V-A. Complementary, these
experiments also demonstrate that PADLL can achieve QoS
limits even for distributed jobs.

C. Per-job QoS control

We now demonstrate how PADLL achieves per-job QoS
control in HPC storage systems by orchestrating the metadata
workflows of all active jobs. Under this scenario, metadata
operations are treated as a finite and shared I/O resource, and
for the PFS to provide sustained I/O performance, jobs need
to meet specific metadata service level objectives (SLOs).
Workload configuration. At all times, there are at most four
jobs in the system, each running 4 trace replayer instances in
dedicated compute nodes (16 in total) and submitting metadata
operations. Jobs are incrementally added to the system every
3 minutes. We consider that the system administrator defines
a maximum rate of metadata operations (MaxR) that can be
submitted to the targeted PFS, being set at 110 kops/s (red
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Fig. 7: Per-job metadata control over Baseline, Uniform, Priority,
PSharing, and PSFA setups under testing scenario #1.

dashed lines). The trace used in the experiments corresponds
to the metadata operations of all MDT servers of PFS1.
Testing scenarios. To provide a comprehensive evaluation
testbed, we consider three testing scenarios with varying load
proportions and rate limits. Table I depicts the load proportion
and the metadata rate limit for each combination of testing
scenario and job. Testing scenario #1: jobs follow the same
workload but are assigned with different priorities. Testing
scenario #2: jobs have different load proportions and rate
limits are assigned proportionally to each job’s load (i.e., jobs
with lower load are assigned with lower priority). Testing
scenario #3: jobs follow the same load proportions as testing
scenario #2, but the rate limits of jobs 1 and 4 are switched.
Setups. Experiments were conducted under five setups. Base-
line represents the current setup supported at most super-
computers, where jobs execute without any throttling. The
remainder setups are rate limited with PADLL, with a max-
imum combined rate of MaxR, and respect to the control
algorithms discussed in §IV. In Uniform, each job is rate
limited to 27.5 kops/s, while Priority, Proportional sharing
(PSharing), and PSFA, jobs are assigned different rates, as
depicted in Table I. For PSharing, these limits represent the
per-job maximum rate when all jobs are active, while for PSFA
represent the per-job maximum rate when all jobs are active
and each job’s usage is higher than its demand.
Test. scenario #1. Fig. 7 depicts, for each setup, the metadata
rate of all jobs at 1-second intervals under testing scenario #1.
Experiments include seven phases (À–Æ), each marking when
a given job enters or leaves the system.
Baseline. Experiments were executed over 45 minutes. Each



job executes over 36 minutes and leaves the system in the
same order as it entered. Throughout the entire execution, we
observe that the workload is extremely volatile and bursty,
with peaks that reach 300 kops/s and several periods where
the file system continuously serves requests over MaxR.
Uniform. Experiments were executed over 45 minutes. When-
ever a new job is added, it is provisioned with its assigned rate
(27.5 kops/s). PADLL ensures, to all jobs, sustained metadata
throughput and eliminates existing burstiness. However, while
this setup is useful to equally distribute metadata rate among
jobs, it does not allow them to execute with different priorities.
Priority. Experiments were executed over 54 minutes. Simi-
larly to Uniform, PADLL ensures that all jobs are provisioned
with their assigned rate. However, when a job is set with low
priority, its execution may take longer than its corresponding
unthrottled version since metadata operations are rate limited
more aggressively. We observe this in Job1, where its exe-
cution takes 18 minutes longer than in previous setups, and
occurs because the algorithm does not leverage from leftover
metadata rate (i.e., À-Â and Ä-Æ), as discussed in §IV-A.
PSharing. Experiments were executed over 45 minutes. Whe-
never a new job enters (À-Â) or leaves the system (Ä-Æ), it is
assigned with its proportional share. When all jobs are running
(Ã), they are assigned with their demanded rate. Compared
to Priority, PSharing distributes leftover metadata rate, which
enables improving Job1’s performance by 9 minutes. However,
since the workload is volatile and bursty, we observe several
periods with false resource allocation (§IV-B), being partic-
ularly noticeable in the 12–20 minutes and 25–37 minutes
intervals. During these periods one or more jobs are over-
provisioned, and the exceeding resources could be used to
improve the performance of the remainder jobs (e.g., Job1
still took 9 minutes longer to execute than in Baseline).
PSFA. Experiments were executed over 45 minutes. All
jobs complete their execution in the same time as their
corresponding unthrottled versions. Throughout the overall
execution, the PSFA algorithm continuously adjusts the limit
of each job based on the actual rate it is using, preventing
over-provisioning. Specifically, in the 12–20 minutes period,
PSFA assigns unused metadata rate to Job1, Job2, and Job3,
temporarily having more rate than their demand. The same is
observed for Job1 and Job2 in the 25–37 minutes period.
Test. scenario #2. Fig. 8 depicts, for each setup, the metadata
rate of all jobs at 1-second intervals under testing scenario #2.
Baseline. Experiments executed over 45 minutes. As the over-
all metadata load is the same across all testing scenarios, we
observe similar volatility and burstiness as in testing scenario
#1. The key difference is that now Job4 generates a major part
of the metadata load, while Job1 has significantly lower load.
Uniform. Experiments executed over 62 minutes. Similarly
to testing scenario #1, whenever a new job is added it is
provisioned with its static rate (27.5 kops/s). However, as Job4

now generates 45% of the overall metadata load, PADLL ag-
gressively rate limits it, resulting in a longer execution period
(i.e., 17 minutes longer than Baseline). On the other hand,
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Fig. 8: Per-job metadata control over Baseline, Uniform, Priority,
PSharing, and PSFA setups under testing scenario #2.

Job1 experiences over-provisioning for most of its execution,
given that it only generates 15% of the overall workload.
Priority. Experiments executed over 47 minutes. Due to the
decreased metadata load, Job1 finishes approximately at the
same time as in Baseline. On the other hand, Job4 takes
2 minutes longer to complete. Specifically, even though Job4

is set with a larger resource share (40 kops/s), due to its large
metadata load, PADLL aggressively rate limits it throughout
the overall execution period, resulting in a large backlog of
metadata operations to be performed, as observed in Æ.
PSharing. Experiments executed over 45 minutes. Contrarily
to static setups, since PSharing distributes leftover metadata
rate whenever it is available, jobs complete their execution
in 36 minutes (as in Baseline). However, similarly to the
observations made in testing scenario #1, this setup experi-
ences periods with false resource allocation, being especially
noticeable in the 12–18, 23–35, and 36–42 minutes intervals.
PSFA. Experiments executed over 45 minutes. PSFA maxi-
mizes the use of metadata resources by reallocating unused
rate from over-provisioned jobs. For instance, during the 23–
30 minutes period, Job4 improves its performance by leverag-
ing from unused metadata rate of the other jobs. Interestingly,
during the 31–36 interval, PSFA demonstrates lower usage of
resources compared to Priority and PSharing. This is because
up to the 31-min mark, PSFA allocates enough rate to all jobs
(either from leftovers or over-provisioning) that allowed them
to conduct any accumulated backlog of metadata operations.
Test. scenario #3. Fig. 9 depicts, for each setup, the metadata
rate of all jobs at 1-second intervals under testing scenario #3.
Experiments conducted for Baseline and Uniform setups are
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Fig. 9: Per-job metadata control over Priority, PSharing, and PSFA
setups under testing scenario #3.

the same as in testing scenario #2, as both metadata load and
rate limits remain unchanged. We draw identical observations.
Priority. Experiments executed over 78 minutes. As a result
of being assigned with the lowest priority while having the
highest load, Job4 takes 33 minutes longer to complete its
execution. Noticeably, during Æ, PADLL aggressively rate
limits operations at a constant rate of 15 kops/s, not leveraging
from the remainder 95 kops/s available in the system.
PSharing. Experiments executed over 50 minutes. Since Job4

is the last to enter the system (Ã), it only leverages from
leftover rate when the other jobs complete their execution
(Ä–Æ). Thus, due to accumulated backlog (Æ), the job sub-
mits metadata operations at a constant rate of MaxR, being
28 minutes faster than Priority but still requiring an additional
5 minutes to complete when compared to Baseline. On the
other hand, Job1 is over-provisioned for most of its execution.
PSFA. Experiments executed over 45 minutes. Since PSFA
prevents false resource sharing, during the 12–42 minutes
interval, a large share of unused metadata rate is assigned
to Job4, which enables executing all accumulated backlog just
under the 45-min mark (Æ). Note that PSFA is able to reassign
unused resources without compromising other policies; for
instance, Job1 demonstrates the same performance curve as in
setups with more strict policies, namely Priority and PSharing.
Summary. Results demonstrate that PADLL enforces different
QoS policies over distributed metadata-aggressive jobs without
exceeding MaxR. Uniform is suited for scenarios where jobs
have similar I/O load (#1), while Priority is appropriate for
assigning larger metadata shares to jobs with higher load (#2).
PSharing prevents under-provisioning, improving job execu-
tion time and overall resource usage by allocating leftover
metadata rate (#1, #2). PSFA maximizes the use of metadata
rate, accelerating the performance of resource-hungry jobs
without degrading over-provisioned ones (#1 – #3).

D. PADLL performance, resource usage, and overhead
Finally, we demonstrate the performance of PADLL control

and data planes, their impact on computational resources, and
evaluate the overhead imposed over applications.
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Fig. 10: Average latency of control cycles (in global controller) when
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Control plane. We conducted a set of experiments where the
global controller performs 250k iterations of PSFA control
algorithm’s main phases, namely collect, compute, and enforce
(§III-B). In particular, the collect and enforce phases involve
traversing the network multiples times per iteration. The
number of local controllers submitting metrics and receiving
enforcement rules is increased from 1 to 1,000.

Fig. 10 depicts the obtained results, reporting the average
latency of each control iteration. Results demonstrate that
latency increases with the number of connected controllers. Up
to 40 local controllers, PADLL performs at µs-scale ranging
between 162µs and 664µs. After that mark, the average
latency per control cycle ranges between 1.03ms and 11.11ms.

These results show that the global controller can orchestrate
the overall system at ms-scale, which fits the requirements of
production workloads where these control cycles are tuned
with larger time frames, as otherwise stages would be ad-
justed for every minimal workload change in the system. For
instance, the experiments discussed in §V-C were conducted
with control cycles of 1-second intervals. When reaching
1,000 nodes, we start to notice a higher utilization of network
resources at the global controller, and an increase in response
time. This highlights the need to further research the scalability
of this component as future work.

Data plane. To evaluate the maximum performance achievable
with a single PADLL stage, we implemented a benchmark
that submits POSIX requests in a closed loop, under a vary-
ing number of threads (1–256). Each thread submits 100M
requests. The stage is configured with the same number of
channels as client threads, and token-buckets are set with a
rate large enough to not perform any throttling. Requests are
intercepted by the stage and follow the same path as discussed
in §III-A. Results report that a single stage can service requests
at a high rate, ranging between 1.28 Mops/s and 3.20 Mops/s.

Overhead. To evaluate the overhead imposed by PADLL,
we conducted experiments with a passthrough setup, which
respects to a scenario where POSIX operations submitted by
the benchmark are handled by PADLL but are not rate limited.
We repeated §V-A and §V-B workloads. When compared to
baseline, the overhead is negligible, never degrading perfor-
mance more than 0.9% across all experiments.

Resource usage. We now discuss the resource usage impact
imposed by PADLL. In terms of network bandwidth, the pay-
load of the messages exchanged in each control cycle between
the global and each local controller is approximately 200
bytes, which is negligible compared to the capacity of modern



network devices. As for network latency, as referred in the
control plane performance discussion (Fig. 10), PADLL is able
to manage multiple local controllers (and corresponding data
plane stages) at µs-scale. Regarding CPU and memory usage,
the components that run co-located with the targeted jobs
(i.e., data plane stages and local controller) impose minimal
overhead, only increasing CPU by at most 5% and memory by
≈100 MiB. As such, PADLL imposes minimal overhead to all
targeted jobs, being suited for the computational requirements
of modern I/O infrastructures.

VI. RELATED WORK

HPC storage QoS. Many works, such as GIFT [48], CAL-
CioM [22], IOrchestrator [60], UShape [61], and Gainaru
et al. [25], are designed to mitigate I/O contention in HPC
storage stacks but ignore the impact that metadata workflows
have over the overall system performance. PADLL is able to
control the rate of both data and metadata workflows. Other
systems are directly implemented within core layers of the
HPC I/O stack, including the PFS [28], [31], [50], [60], [61],
scheduler [25], and I/O libraries [14], [22]. These solutions
are intrusive and offer limited maintainability and portability.
PADLL actuates at the compute node level and does not require
any changes to core layers of the HPC I/O stack.

Similarly to PADLL, OOOPS transparently intercepts and
rate limits POSIX requests at compute nodes [29]. However,
it does not provide global visibility, being only capable of
enforcing static policies that remain unchanged throughout the
job execution. On the other hand, PADLL can enforce dynamic
and cluster-wide QoS policies that require global visibility.
SDS systems. PADLL builds on a large body of work on
SDS [42]. Systems like IOFlow, sRoute, and PSLO, actuate
at the virtualization and block device layers, only controlling
the rate of read and write requests [36], [45], [57], [59].
Others, like Retro and Crystal, enforce resource management
policies over distributed storage systems, but are directly
implemented within the storage system itself, offering limited
maintainability and portability [27], [40]. SIREN enforces
bandwidth policies over OrangeFS [13], [31]. PADLL is a
bare-metal solution that actuates at the compute node level
and transparently intercepts and enforces POSIX requests, both
data and metadata, before being submitted to the PFS. This
makes it applicable over different applications and compatible
with POSIX-compliant storage systems.
I/O optimizations. Many works propose I/O optimizations
to reduce the amount of operations submitted to the PFS
by resorting to storage tiering and node-local storage [19],
[23], [32], [46], remote burst buffers [23], [33], [37], data
reduction techniques [44], and optimized data formats [24],
[39], or improve the metadata management of large-scale file
systems [17], [49], [58]. While these can reduce the I/O
pressure imposed over the PFS, they can still expose it to
burstiness and unfairness, since I/O workflows are not rate
limited. On the other hand, PADLL rate limits all workflows
destined towards the PFS. Further, contrary to PADLL, several

of these works are also intrusive to core layers of the HPC
I/O stacks [17], [33], [37], [49], [58]. While complementary
to our work, these can be combined with PADLL to further
improve the control of I/O workflows in HPC clusters.

VII. CONCLUSION

We have presented PADLL, a storage middleware that en-
ables QoS control of data and metadata workflows in HPC
storage systems. PADLL does not require changing any core
layer of the HPC stack, and enforces storage policies with fine-
granularity and global system visibility. Results demonstrate
that PADLL can enforce complex storage policies over con-
current metadata-aggressive jobs in holistic fashion, achieving
I/O fairness, prioritization, and performance isolation.

With PADLL, we aim at supporting system administrators,
researchers, and practitioners to effectively provide QoS con-
trol over large-scale HPC systems, and assist bridging the
convergence of cloud and HPC infrastructures.
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Süß, and André Brinkmann. A Configurable Rule Based Classful Token
Bucket Filter Network Request Scheduler for the Lustre File System. In
International Conference for High Performance Computing, Networking,
Storage and Analysis. ACM, 2017.

[51] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev
Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla,
Michael Bernstein, et al. Imagenet Large Scale Visual Recognition
Challenge. International Journal of Computer Vision, 115(3), 2015.

[52] Mitsuhisa Sato, Yutaka Ishikawa, Hirofumi Tomita, Yuetsu Kodama,
Tetsuya Odajima, Miwako Tsuji, Hisashi Yashiro, Masaki Aoki, Naoyuki
Shida, Ikuo Miyoshi, Kouichi Hirai, Atsushi Furuya, Akira Asato,
Kuniki Morita, and Toshiyuki Shimizu. Co-Design for A64FX Manycore
Processor and “Fugaku”. In International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis. IEEE, 2020.

[53] Philip Schwan et al. Lustre: Building a file system for 1000-node
clusters. In Proceedings of the 2003 Linux Symposium, volume 2003,
pages 380–386, 2003.

[54] Hongzhang Shan, Katie Antypas, and John Shalf. Characterizing and
Predicting the I/O Performance of HPC Applications Using a Parame-
terized Synthetic Benchmark. In Proceedings of the 2008 ACM/IEEE
Conference on Supercomputing. IEEE, 2008.

[55] David Shue, Michael Freedman, and Anees Shaikh. Performance
Isolation and Fairness for Multi-Tenant Cloud Storage. In 10th USENIX
Symposium on Operating Systems Design and Implementation, pages
349–362. USENIX Association, 2012.

[56] Dan Stanzione, John West, R. Todd Evans, Tommy Minyard, Omar
Ghattas, and Dhabaleswar K. Panda. Frontera: The Evolution of
Leadership Computing at the National Science Foundation. In Practice
and Experience in Advanced Research Computing, pages 106–111.
ACM, 2020.

[57] Ioan Stefanovici, Bianca Schroeder, Greg O’Shea, and Eno Thereska.
sRoute: Treating the Storage Stack Like a Network. In 14th USENIX
Conference on File and Storage Technologies, pages 197–212. USENIX
Association, 2016.

[58] Houjun Tang, Suren Byna, Bin Dong, Jialin Liu, and Quincey Koziol.
SoMeta: Scalable Object-Centric Metadata Management for High Per-
formance Computing. In 2017 IEEE International Conference on Cluster
Computing, pages 359–369. IEEE, 2017.

[59] Eno Thereska, Hitesh Ballani, Greg O’Shea, Thomas Karagiannis,
Antony Rowstron, et al. IOFlow: A Software-Defined Storage Architec-
ture. In 24th ACM Symposium on Operating Systems Principles, pages
182–196. ACM, 2013.

[60] Xuechen Zhang, Kei Davis, and Song Jiang. IOrchestrator: Improving
the Performance of Multi-node I/O Systems via Inter-Server Coordina-
tion. In 2010 ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE, 2010.

[61] Xuechen Zhang, Kei Davis, and Song Jiang. QoS Support for End Users
of I/O-Intensive Applications Using Shared Storage Systems. In 2011
International Conference for High Performance Computing, Networking,
Storage and Analysis. ACM, 2011.

[62] Yue Zhu, Fahim Chowdhury, Huansong Fu, Adam Moody, Kathryn
Mohror, Kento Sato, and Weikuan Yu. Entropy-Aware I/O Pipelining
for Large-Scale Deep Learning on HPC Systems. In 2018 IEEE 26th
International Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems, pages 145–156. IEEE, 2018.

APPENDIX
ARTIFACT DESCRIPTION/EVALUATION

The paper proposes a new storage middleware that enables
system administrators to proactively and holistically control
the rate of data and metadata workflows to achieve QoS in
HPC storage systems. It is organized in two main components:
the data plane (PADLL) and the control plane (CHEFERD).

PADLL. The data plane, named PADLL, is a multi-stage com-
ponent that provides the building blocks for differentiating and
rate limiting POSIX requests that are destined towards a given
file system (e.g., Lustre, ext4). Stages actuate at the compute
node level, and use LD_PRELOAD to transparently intercept
POSIX requests (i.e., libc.so calls) from a given application
and handling them before being submitted to the file system.
PADLL is written in C++17 and is publicly available at the
dsrhaslab/padll1 GitHub repository under a BSD 3-
Clause license. The logic for differentiating and rate limiting
requests was built using the PAIO data plane framework [43].2

Communication between PADLL stages and the control plane
(local controllers) is established using UNIX Domain Sockets.

CHEFERD. The control plane, named CHEFERD, is a logi-
cally centralized component with system-wide visibility that
defines how all I/O requests should be handled. It follows a
hierarchical distribution, made of global and local controllers.
Local controllers are placed at compute nodes and manage all
PADLL stages that are executing there. The global controller
executes at a dedicated compute node, and communicates
with all local controllers with RPC calls through the gRPC
framework. Moreover, CHEFERD is written in C++17 and
is publicly available at the dsrhaslab/cheferd3 GitHub
repository under a BSD 3-Clause license.

Artifacts. Both PADLL and CHEFERD, alongside a trace
replayer and several scripts to reproduce the experiments of
the paper are publicly available at Zenodo’s artifact repository
(https://zenodo.org/record/7627949/) [41].
• PADLL and CHEFERD have the same version as their cor-

responding publicly available GitHub repositories.
• The trace replayer (mdreplayer) is used to generate

realistic metadata workloads. It is multi-threaded, and each
thread submits operations at a variable rate that is defined
by the trace distribution.

• The scripts folder includes bash scripts for installing and
deploying all systems, as well as scripts to (1) reproduce
experiments in the paper (§V-A–§V-C) at the Frontera
supercomputer, or (2) test a subset of them in a commodity
setup (namely, §V-A getattr and §V-B metadata).
Further, all repositories include README files that describe

how to install, configure, and test each system.

REQUIREMENTS AND DEPENDENCIES

System requirements. PADLL and CHEFERD were built and
tested using g++9.3.0 and cmake-3.16, and were suc-
cessfully deployed in Ubuntu Server 20.04 LTS, CentOS 7.5,
and CentOS 7.9 Linux distributions. Operating system wise,
the main requirements of these artifacts lie on the use of
LD_PRELOAD (PADLL) and UNIX Domain Sockets (PADLL
and CHEFERD).

1PADLL: https://github.com/dsrhaslab/padll
2PAIO: https://github.com/dsrhaslab/paio
3CHEFERD: https://github.com/dsrhaslab/cheferd
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PADLL dependencies. PADLL was built using the PAIO
v1.0.0 and spdlog v1.8.14 libraries. The former needs
to be manually installed (installation steps are detailed in the
PADLL repository), and the latter is installed at compile time
(defined with a CMake rule). Moreover, PADLL also uses
xoshiro-cpp5, tabulate6, and better-enums7 third-
party libraries, which are embedded as single-header files.
CHEFERD dependencies. CHEFERD was built using the
spdlog v1.8.1, grpc v1.37.08, gflags v2.2.29,
asio v1.18.010, and yaml-cpp v0.6.311 libraries. All
dependencies are installed at compile time, and all rules are
defined at CHEFERD’s CMakeLists.txt file.

COMMODITY HARDWARE EXPERIMENTS

To ease the reproducibility of the paper experiments, we
created a set of scripts to test the artifacts under a commodity
hardware testbed. For this scenario, we consider the per-
operation type rate limiting (getattr) and per-operation
class rate limiting (metadata) use cases, which are dis-
cussed in §V-A and §V-B of the paper, respectively.
Experimental testbed. Experiments were conducted in a
server equipped with a single 6-core Intel Core i5-9500
processor, 16 GiB of memory, and a Samsung NVMe SSD
970 EVO Plus 250 GiB disk. Software-wise it used Ubuntu
Server 20.04 LTS, with kernel 5.4.0 and an ext4 file system.
Methodology. All systems were executed under the same
server. Experiments were conducted under the following steps:
1) Execute the global controller using the script launch-

_core_controller.sh. The global controller will run
at a user-level process, exposing a communication end-
point (gRPC server) for local controllers to connect.

2) Execute the local controller using the script launch_lo-
cal_controller.sh. The local controller will connect
to the already running global controller, while also creating
a UNIX Domain Socket for data plane stages to connect.

3) Finally, execute the application (trace replayer) with the
script launch_padll_application.sh. The appli-
cation will be spawned with a LD_PRELOAD hook for the
data plane stage (i.e., replace libc.so calls with those
exposed by PADLL).

For the experiments described at §V-A, the trace replayer
replays the getattr_log.txt file, while for §V-B’s ex-
periments, it simultaneously replays getattr_log.txt,
rename_log.txt, and open_log.txt log files.12 All
traces are synthetic (i.e., not the original PFS1 logs discussed
in §II), but follow a variable metadata rate distribution. Both
experiments are executed over 1 minute, and PADLL adjusts

4spdlog: https://github.com/gabime/spdlog/tree/v1.8.1
5Xoshiro-cpp: https://github.com/Reputeless/Xoshiro-cpp
6tabulate: https://github.com/p-ranav/tabulate
7better-enums: https://github.com/aantron/better-enums
8gRPC: https://github.com/grpc/grpc/tree/v1.37.0
9gflags: https://github.com/gflags/gflags/tree/v2.2.2
10asio: https://github.com/chriskohlhoff/asio/tree/asio-1-18-0
11yaml-cpp: https://github.com/jbeder/yaml-cpp/tree/yaml-cpp-0.6.3
12All logs can be found at mdreplayer/logs/.

the rate at which POSIX operations are submitted to the file
system every 20 seconds.
Testing scripts. The scripts discussed in this section can be
found at the scripts/commodity_scripts folder of the
Zenodo public artifacts: /per_type_getattr for the §V-A
and /per_class_metadata for the §V-B experiments.

FRONTERA EXPERIMENTS

All experiments presented in the paper can be reproduced
using the scripts available at scripts/frontera_scri-
pts folder of the Zenodo public artifacts, which are ready to
be executed at TACC’s Frontera supercomputer.
Experimental testbed. Experiments were conducted over two
hardware configurations. For the §V-A, §V-B metadata,
and §V-C experiments, we used compute nodes of Frontera’s
normal job queue, which are equipped with two 28-core
Intel Xeon processors, 192 GiB of RAM, and a Mellanox
InfiniBand HDR-100 network card, running CentOS 7.9. The
production PFS is a Lustre file system composed of 4 MDSs,
each with a single MDT, and 32 OST nodes with 22 PiB of
storage capacity. The §V-B data (TensorFlow) were executed
at computes nodes of Frontera’s rtx job queue, which are
equipped with two 16-core Intel Xeon processors, 128 GiB of
RAM, four NVIDIA Quadro RTX 5000 GPUs, and a Mellanox
InfiniBand FDR network card, running CentOS 7.9.
Workloads. Metadata workloads were conducted using the
trace replayer. All traces are synthetic (i.e., not the original
PFS1 logs), but follow a variable metadata rate distribution.

Data experiments were twofold: (1) for §V-A read and
write testing scenarios, we used IOR (commit #1076c89)
sequential read/write workloads (IOR scripts can be found at
per_type/padll_ior_job.sh); and (2) for the §V-B
data experiment, we used TensorFlow v2.3.2 with the LeNet
training model, configured with a batch size of 128 TFRecords,
and ImageNet dataset (TensorFlow scripts can be found at
per_class/data/test_tensorflow.sh).13

Methodology. For all experiments, the global controller runs
at a dedicated compute node (core_job.sh). For §V-A
and §V-B, we use an additional compute node to host the
local controller (local_job.sh), the application (trace
replayer), and the data plane stage.

For §V-C experiments, we use four additional compute
nodes, each hosting a local controller, the application (trace
replayer), and the data plane stage.
Testing scripts. For each evaluation scenario, we used the
following scripts:
• §V-A: frontera_scripts/per_type

– open: launch_open_test.sh
– getattr: launch_getattr_test.sh
– read: launch_read_test.sh
– write: launch_write_test.sh

• §V-B: frontera_scripts/per_class
– metadata: metadata/launch_test.sh

13ImageNet: https://www.image-net.org/challenges/LSVRC/2012/.
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– data: data/launch_test.sh
• §V-C: For the §V-C experiments, we only provide scripts

for the testing scenario #1 (the remainder are just a
variation of the load and job priorities). Further, we
provide five subdirectories, each with the corresponding
scripts for the different algorithms discussed in §IV, in-
cluding: baseline, uniform, priority, proportional sharing,
and PSFA. All scripts can be found in the fronte-
ra_scripts/per_job folder.
– baseline: baseline/launch_test.sh
– uniform: static/launch_test.sh
– priority: priority/launch_test.sh
– psharing: proportional/launch_test.sh
– psfa: psfa/launch_test.sh
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